基于深度学习检测恶意流量识别框架(80+特征/99%识别率)

2024-04-30 11:28

本文主要是介绍基于深度学习检测恶意流量识别框架(80+特征/99%识别率),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于深度学习检测恶意流量识别框架

目录

    • 基于深度学习检测恶意流量识别框架
    • 简要
    • 示例
      • a.检测攻击类别
      • b.模型训练结果输出参数
      • c.前端检测页面
      • d.前端训练界面
      • e.前端审计界面(后续更新了)
      • f.前端自学习界面(自学习模式转换)
        • f1.自学习模式
    • 核心代码示例
      • a.代码结构
      • b.数据预处理
      • c.抓包模块
      • d.数据库操作
      • e.全局变量实现

简要

内容说明
使用语言Python
训练数据2800w
支持检测攻击方式26种
深度学习库keras
Loss值0.0023
准确值99.9%
检测方式实时检测
数据库Sqlite
呈现方式CS架构/web页面
附加功能流量自学习训练模式(工作模式:对应正常流量,攻击模式:对应?ATTACK)

示例

a.检测攻击类别

在这里插入图片描述

b.模型训练结果输出参数

在这里插入图片描述

c.前端检测页面

在这里插入图片描述

d.前端训练界面

在这里插入图片描述

e.前端审计界面(后续更新了)

在这里插入图片描述
在这里插入图片描述

f.前端自学习界面(自学习模式转换)

f1.自学习模式

这里解释下:这里有两个模式,开启工作模式后,确保当前流量为正常流量,系统会自动标记并在达到阈值后进行训练,从而增加泛化能力,反之。

在这里插入图片描述

进度条显示内容解释:当前|总进度|训练轮数|源数据
在这里插入图片描述

核心代码示例

a.代码结构

在这里插入图片描述
在这里插入图片描述

b.数据预处理

def __serial(self,debug=0):self.data['Timestamp'] = self.data['Timestamp'].apply(lambda x: self.__timestamp_to_float(x))self.data['Dst_IP'] = self.data['Dst_IP'].apply(self.__ip_to_float)self.data['Src_IP'] = self.data['Src_IP'].apply(self.__ip_to_float)if debug:self.__pull(self.data,"d1.txt")self.data["Label"] = self.data["Label"].apply(self.__label_to_float)columns_to_convert = [col for col in self.data.columns if col not in ['Timestamp', 'Dst_IP', 'Src_IP',"Label"]]for col_name in columns_to_convert:self.data[col_name] = pd.to_numeric(self.data[col_name], errors='coerce')self.data = self.data.apply(pd.to_numeric, errors='coerce')self.data = self.data.fillna(0)inf_values = ~np.isfinite(self.data.to_numpy())self.data[inf_values] = np.nan  # 替换为NaN,您也可以选择替换为其他合理值self.data = self.data.dropna()  # 删除包含缺失值的行self.features = self.data.iloc[:, :-1]self.labels = self.data.iloc[:, -1]  # 标签if debug:self.__pull(self.data,"d2.txt")self.scaler = StandardScaler()self.features = self.scaler.fit_transform(self.features)

c.抓包模块

def packet_to_dict(packet):packet_dict = {}if const.cdist[const.pkg_id] > const.cdist[const.max_pkgn]:const.cdist[const.pkg_id] = 0packet_dict["data"] = packetpacket_dict["id"] = const.cdist[const.pkg_id]const.cdist[const.pkg_id] +=1if IP in packet:packet_dict["src_ip"] = packet[IP].srcpacket_dict["dst_ip"] = packet[IP].dstelse:packet_dict["src_ip"] = ""packet_dict["dst_ip"] = ""return packet_dictdef write_packet_summary(filename, packet_summary):with open(filename, 'a') as file:file.write(packet_summary + '\n')def listen(key,qkey,filename):# 定义回调函数来处理捕获到的数据包def packet_callback(packet):try:packet_info = packet_to_dict(packet)if packet_info != {}:const.cdist[qkey].put(packet_info)except Exception as e:log.Wlog(3,f"listen* {e}")try:timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S:%f')[:-3]summary = packet.summary()packet_with_timestamp = f"[{timestamp}] >> {summary}"write_packet_summary(filename, packet_with_timestamp)maintain_packet_summary(filename, max_lines=20)except Exception as e:log.Wlog(3, f"listen* {e}")# return packet.summary()# 定义停止条件函数def stop_condition(packet):# print(const.cdist[key],key)return const.cdist[key]# 开始捕获数据包,使用 stop_filter 参数指定停止条件sniff(iface=const.cdist[const.net_interface],prn=packet_callback,stop_filter=stop_condition)

d.数据库操作

def data_init():# 连接到数据库,如果不存在则创建conn = sqlite3.connect(const.cdist[const.sql_dbp])# 创建游标对象cur = conn.cursor()# 创建数据表cur.execute('''CREATE TABLE IF NOT EXISTS pkg_data (id INTEGER PRIMARY KEY,src_ip TEXT,dst_ip TEXT,data TEXT,time1 INTEGER,label INTEGER)''')cur.close()conn.close()def get_sql_cur():# 连接到数据库,如果不存在则创建conn = sqlite3.connect(const.cdist[const.sql_dbp])# 创建游标对象cur = conn.cursor()return cur,conn
def close_sql(cur,conn):try:cur.close()conn.close()except:pass
# 添加数据pkg_data
def add_data(src_ip, dst_ip, data, time1, label):cur,conn = get_sql_cur()cur.execute("INSERT INTO pkg_data (src_ip, dst_ip, data, time1, label) VALUES (?, ?, ?, ?, ?)", (src_ip, dst_ip, data, time1, label))conn.commit()close_sql(cur,conn )# 删除指定 src_ip 的数据
def delete_data(src_ip):cur,conn = get_sql_cur()cur.execute("DELETE FROM pkg_data WHERE src_ip=?", (src_ip,))conn.commit()close_sql(cur,conn )# 查询指定时间戳范围内的域名及出现次数
def query_data_k1(start_timestamp, end_timestamp):cur,conn = get_sql_cur()cur.execute("SELECT src_ip, COUNT(*) FROM pkg_data WHERE time1 BETWEEN ? AND ? GROUP BY src_ip", (start_timestamp, end_timestamp))rows = cur.fetchall()close_sql(cur,conn )return rows

e.全局变量实现

# const.py
cdist = {}
def _const_key_(key, value):cdist[key] = value# run.py
def init():odir = os.getcwd()signal.signal(signal.SIGINT, quit)                                signal.signal(signal.SIGTERM, quit)const._const_key_(const.log_path, f"{odir}/plug/utils.log")const._const_key_(const.temp_pkg, f"{odir}/plug/temp.pkg")const._const_key_(const.out_csv_d, f"./temp_pkg_data/csv/")const._const_key_(const.out_pcap_d, f"./temp_pkg_data/pcap/")const._const_key_(const.train_info,f"{odir}/plug/train.info")const._const_key_(const.sql_dbp,f"{odir}/plug/pkg_data.db")const._const_key_(const.out_atrain_d,f"./temp_pkg_data/atrain/")const._const_key_(const.Base_h5,f"{odir}/2800w-base.h5")const._const_key_(const.deeps,deep_s.DeepS())const._const_key_(const.AddTrain_Stream_Mode,{"mode":0,"args":"","key":"","label":"","csvp":"","echo":0}) # 0不进行模式,1进行正常流量训练const._const_key_(const.Pkg_DATA_List,[])const._const_key_(const.max_pkgn,2000)const._const_key_(const.MAX_ADDTrain_n,10241)const._const_key_(const.pkg_id,0)const._const_key_(const.log_level, 3)const._const_key_(const.queue1, Queue(maxsize=65535))  # 创建队列data.data_init()f= open(const.cdist[const.train_info], 'w')f.close()CronWork(100,odir)

这篇关于基于深度学习检测恶意流量识别框架(80+特征/99%识别率)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948749

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学