python实现短文本相似度计算—word2vec对文本编码、LSTM计算距离

2024-04-28 05:32

本文主要是介绍python实现短文本相似度计算—word2vec对文本编码、LSTM计算距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

path='./data/qa_test.txt'#数据的路径
path_word2vec='/home/ruben/data/nlp/word2vec_wx'#word2vec路径
#造数据
fake_data=open(path,'r').readlines()
tain_data_l=[]
tain_data_r=[]
for line in fake_data:for line2 in fake_data:if(line is not line2):print(line.replace('\n',''),line2.replace('\n',''))tain_data_l.append(line.replace('\n',''))tain_data_r.append(line2.replace('\n',''))
print('left length:',len(tain_data_l))
print('right length:',len(tain_data_r))
import jieba
#构造字典和weight矩阵
list_word=['UNK']
dict_word={}
tain_data_l_n=[]#左边LSTM的输入
tain_data_r_n=[]#右边LSTM的输入for data in [tain_data_l,tain_data_r]:for line in data:words=list(jieba.cut(line))for i,word in enumerate(words):if word not in dict_word:dict_word[word]=len(dict_word)
print(dict_word)#字典构造完毕
id2w={dict_word[w]:w for w in dict_word}#word的索引
embedding_size=256
embedding_arry=np.random.randn(len(dict_word)+1,embedding_size)#句子embedding矩阵
embedding_arry[0]=0
word2vector=gensim.models.Word2Vec.load(path_word2vec)
for index,word in enumerate(dict_word):if word in word2vector.wv.vocab:embedding_arry[index]=word2vector.wv.word_vec(word)
print('embedding_arry shape:',embedding_arry.shape)
del word2vector
#将词组替换为索引
for line in tain_data_l:words = list(jieba.cut(line))for i,word in enumerate(words):words[i]=dict_word[word]tain_data_l_n.append(words)
print('tain_data_l_n length:',len(tain_data_l_n))
y_train=np.ones((len(tain_data_l_n),))
for line in tain_data_r:words = list(jieba.cut(line))for i,word in enumerate(words):words[i]=dict_word[word]tain_data_r_n.append(words)
print('tain_data_r_n length:',len(tain_data_r_n))
#得到语料中句子的最大长度
max_length=0
for line in tain_data_r_n:if max_length<len(line):max_length=len(line)
print('max length:',max_length)# 对齐语料中句子的长度
tain_data_l_n = pad_sequences(tain_data_l_n, maxlen=max_length)
tain_data_r_n = pad_sequences(tain_data_r_n, maxlen=max_length)#模型参数
n_hidden = 50
gradient_clipping_norm = 1.25
batch_size = 5
n_epoch = 15#相似度计算
def exponent_neg_manhattan_distance(left, right):return K.exp(-K.sum(K.abs(left - right), axis=1, keepdims=True))#输入层
left_input = Input(shape=(max_length,), dtype='int32')
right_input = Input(shape=(max_length,), dtype='int32')
embedding_layer = Embedding(len(embedding_arry), embedding_size, weights=[embedding_arry], input_length=max_length,trainable=False)
#对句子embedding
encoded_left = embedding_layer(left_input)
encoded_right = embedding_layer(right_input)
#两个LSTM共享参数
shared_lstm = LSTM(n_hidden)
left_output = shared_lstm(encoded_left)
right_output = shared_lstm(encoded_right)
malstm_distance = Merge(mode=lambda x: exponent_neg_manhattan_distance(x[0], x[1]),output_shape=lambda x: (x[0][0], 1))([left_output, right_output])# model
malstm = Model([left_input, right_input], [malstm_distance])optimizer = Adadelta(clipnorm=gradient_clipping_norm)malstm.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['accuracy'])
#train
malstm.fit(x=[np.asarray(tain_data_l_n), np.asarray(tain_data_r_n)], y=y_train, batch_size=batch_size, epochs=n_epoch,validation_data=([np.asarray(tain_data_l_n), np.asarray(tain_data_r_n)], y_train) )

这篇关于python实现短文本相似度计算—word2vec对文本编码、LSTM计算距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/942429

相关文章

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos