python实现短文本相似度计算—word2vec对文本编码、LSTM计算距离

2024-04-28 05:32

本文主要是介绍python实现短文本相似度计算—word2vec对文本编码、LSTM计算距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

path='./data/qa_test.txt'#数据的路径
path_word2vec='/home/ruben/data/nlp/word2vec_wx'#word2vec路径
#造数据
fake_data=open(path,'r').readlines()
tain_data_l=[]
tain_data_r=[]
for line in fake_data:for line2 in fake_data:if(line is not line2):print(line.replace('\n',''),line2.replace('\n',''))tain_data_l.append(line.replace('\n',''))tain_data_r.append(line2.replace('\n',''))
print('left length:',len(tain_data_l))
print('right length:',len(tain_data_r))
import jieba
#构造字典和weight矩阵
list_word=['UNK']
dict_word={}
tain_data_l_n=[]#左边LSTM的输入
tain_data_r_n=[]#右边LSTM的输入for data in [tain_data_l,tain_data_r]:for line in data:words=list(jieba.cut(line))for i,word in enumerate(words):if word not in dict_word:dict_word[word]=len(dict_word)
print(dict_word)#字典构造完毕
id2w={dict_word[w]:w for w in dict_word}#word的索引
embedding_size=256
embedding_arry=np.random.randn(len(dict_word)+1,embedding_size)#句子embedding矩阵
embedding_arry[0]=0
word2vector=gensim.models.Word2Vec.load(path_word2vec)
for index,word in enumerate(dict_word):if word in word2vector.wv.vocab:embedding_arry[index]=word2vector.wv.word_vec(word)
print('embedding_arry shape:',embedding_arry.shape)
del word2vector
#将词组替换为索引
for line in tain_data_l:words = list(jieba.cut(line))for i,word in enumerate(words):words[i]=dict_word[word]tain_data_l_n.append(words)
print('tain_data_l_n length:',len(tain_data_l_n))
y_train=np.ones((len(tain_data_l_n),))
for line in tain_data_r:words = list(jieba.cut(line))for i,word in enumerate(words):words[i]=dict_word[word]tain_data_r_n.append(words)
print('tain_data_r_n length:',len(tain_data_r_n))
#得到语料中句子的最大长度
max_length=0
for line in tain_data_r_n:if max_length<len(line):max_length=len(line)
print('max length:',max_length)# 对齐语料中句子的长度
tain_data_l_n = pad_sequences(tain_data_l_n, maxlen=max_length)
tain_data_r_n = pad_sequences(tain_data_r_n, maxlen=max_length)#模型参数
n_hidden = 50
gradient_clipping_norm = 1.25
batch_size = 5
n_epoch = 15#相似度计算
def exponent_neg_manhattan_distance(left, right):return K.exp(-K.sum(K.abs(left - right), axis=1, keepdims=True))#输入层
left_input = Input(shape=(max_length,), dtype='int32')
right_input = Input(shape=(max_length,), dtype='int32')
embedding_layer = Embedding(len(embedding_arry), embedding_size, weights=[embedding_arry], input_length=max_length,trainable=False)
#对句子embedding
encoded_left = embedding_layer(left_input)
encoded_right = embedding_layer(right_input)
#两个LSTM共享参数
shared_lstm = LSTM(n_hidden)
left_output = shared_lstm(encoded_left)
right_output = shared_lstm(encoded_right)
malstm_distance = Merge(mode=lambda x: exponent_neg_manhattan_distance(x[0], x[1]),output_shape=lambda x: (x[0][0], 1))([left_output, right_output])# model
malstm = Model([left_input, right_input], [malstm_distance])optimizer = Adadelta(clipnorm=gradient_clipping_norm)malstm.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['accuracy'])
#train
malstm.fit(x=[np.asarray(tain_data_l_n), np.asarray(tain_data_r_n)], y=y_train, batch_size=batch_size, epochs=n_epoch,validation_data=([np.asarray(tain_data_l_n), np.asarray(tain_data_r_n)], y_train) )

这篇关于python实现短文本相似度计算—word2vec对文本编码、LSTM计算距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/942429

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形