【机器学习】机器学习学习笔记 - 无监督学习 - k-means/均值漂移聚类/凝聚层次聚类/近邻传播聚类 - 05

本文主要是介绍【机器学习】机器学习学习笔记 - 无监督学习 - k-means/均值漂移聚类/凝聚层次聚类/近邻传播聚类 - 05,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pdf在线免费转word文档 https://orcc.online/pdf

不限次数、免费不需要注册。

无监督学习 (聚类)

  • 聚类是一种无监督学习方法,是将数据划分为若干个簇,使得簇内的点尽可能相似,簇间尽可能不相似。

k-means 聚类

  • k-means 聚类算法是一种迭代算法,它会不断地寻找最佳的 k 值,然后将数据分配到这些簇中。
  • 聚类算法的优点是简单,易于实现,并且对数据维度的要求不高。
from sklearn.cluster import KMeansnum_clusters = 4
kmeans = KMeans(init='k-means++', n_clusters=num_clusters, n_init=10)
kmeans.fit(data)

均值漂移聚类

  • 把数据点的分布看成是概率密度函数, 希望在特征空间中根据函数分布特征找出数据点的"模式"(mode)
  • 优点是不需要事先确定集群的数量
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth# Estimating the bandwidth
# 设置带宽参数 quantile : 0.1 代表数据集中10%的样本作为聚类中心
# n_samples : 样本数
bandwidth = estimate_bandwidth(X, quantile=0.1, n_samples=len(X))# Compute clustering with MeanShift
# bin_seeding : 随机种子
# 随机种子,保证每次聚类结果一致
meanshift_estimator = MeanShift(bandwidth=bandwidth, bin_seeding=True)
meanshift_estimator.fit(X)# 提取标记
labels = meanshift_estimator.labels_
# 聚类中心
centroids = meanshift_estimator.cluster_centers_
num_clusters = len(np.unique(labels))print("Number of clusters in input data =", num_clusters)

凝聚层次聚类

  • 层次聚类算法可以是自下而上的,也可以是自上而下
  • 自下而上: 每个数据点都被看作一个簇,然后将簇进行合并,直到所有簇合并为一个簇
  • 自上而下: 先将所有数据点看作一个簇,然后将簇进行分裂,直到所有簇分裂为一个簇
from sklearn.cluster import AgglomerativeClusteringplt.figure()
model = AgglomerativeClustering(linkage=linkage,connectivity=connectivity, n_clusters=num_clusters)
model.fit(X)# extract labels
labels = model.labels_

近邻传播聚类

  • 找出数据点的相似度,然后根据相似度进行聚类
  • 优点是不需要事先确定簇的数量
from sklearn.cluster import AffinityPropagation# 使用亲和传播聚类算法构建聚类模型
# edge_model.covariance_可以获取到股票之间的协方差矩阵,该矩阵表示了不同股票之间的相关性和波动性
_, labels = cluster.affinity_propagation(edge_model.covariance_)
num_labels = labels.max()# 打印聚类结果
for i in range(num_labels + 1):print("Cluster", i+1, "-->", ', '.join(names[labels == i]))

这篇关于【机器学习】机器学习学习笔记 - 无监督学习 - k-means/均值漂移聚类/凝聚层次聚类/近邻传播聚类 - 05的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/941791

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件