【嵌入式AI开发】轻量级卷积神经网络MobileNet项目实战——文末完整源码工程文件

本文主要是介绍【嵌入式AI开发】轻量级卷积神经网络MobileNet项目实战——文末完整源码工程文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:本文介绍轻量级卷积神经网络MobileNet网络实战,包含MobileNetV1、MobileNetV2、ResNet50三个预训练模型可供选择。

实现:1.预训练MobileNet图像分类,2.调用摄像头实时MobileNet图像分类,3.MobileNet视频图像分类。

MobileNet网络理论详解:【嵌入式AI开发】轻量级卷积神经网络MobileNetV1网络详解-CSDN博客

调用摄像头实时MobileNet图像分类效果:

预训练MobileNet图像分类效果:

 

MobileNet视频图像分类效果与调用摄像头实时MobileNet图像分类效果一致,对输入的任意视频进行视频图像分类输出,生成一个mp4文件。

代码资源的三个.py文件对应三个实战项目

目录

预训练MobileNet图像分类

调用摄像头实时MobileNet图像分类

MobileNet视频图像分类

源码工程下载链接


预训练MobileNet图像分类

首先是导入预训练模型。导入MobileNet V1预训练模型或者导入MobileNet V2预训练模型或者导入ResNet50预训练模型,任选其一便可,只运行一个model,载入模型的变量为model。

本次运行的是MobileNet V1,如下为运行出来的model模型结构,可以看到显示卷积层,然后是深度可分离卷积模块(先DW卷积+BN+RELU,再PW卷积+BN+RELU),然后经过全局平均池化得到1024个向量,输入到1000个神经元的全连接层中,输出1000个类别的logit,再经过softmax归一化得到1000个类别的概率。

整个模型是有可训练参数Trainable params: 4,231,976 (16.14 MB)

Model: "mobilenet_1.00_224"
┌─────────────────────────────────┬────────────────────────┬───────────────┐
│ Layer (type)                    │ Output Shape           │       Param # │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ input_layer (InputLayer)        │ (None, 224, 224, 3)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv1 (Conv2D)                  │ (None, 112, 112, 32)   │           864 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv1_bn (BatchNormalization)   │ (None, 112, 112, 32)   │           128 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv1_relu (ReLU)               │ (None, 112, 112, 32)   │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_1 (DepthwiseConv2D)     │ (None, 112, 112, 32)   │           288 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_1_bn                    │ (None, 112, 112, 32)   │           128 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_1_relu (ReLU)           │ (None, 112, 112, 32)   │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_1 (Conv2D)              │ (None, 112, 112, 64)   │         2,048 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_1_bn                    │ (None, 112, 112, 64)   │           256 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_1_relu (ReLU)           │ (None, 112, 112, 64)   │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pad_2 (ZeroPadding2D)      │ (None, 113, 113, 64)   │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_2 (DepthwiseConv2D)     │ (None, 56, 56, 64)     │           576 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_2_bn                    │ (None, 56, 56, 64)     │           256 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_2_relu (ReLU)           │ (None, 56, 56, 64)     │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_2 (Conv2D)              │ (None, 56, 56, 128)    │         8,192 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_2_bn                    │ (None, 56, 56, 128)    │           512 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_2_relu (ReLU)           │ (None, 56, 56, 128)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_3 (DepthwiseConv2D)     │ (None, 56, 56, 128)    │         1,152 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_3_bn                    │ (None, 56, 56, 128)    │           512 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_3_relu (ReLU)           │ (None, 56, 56, 128)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_3 (Conv2D)              │ (None, 56, 56, 128)    │        16,384 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_3_bn                    │ (None, 56, 56, 128)    │           512 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_3_relu (ReLU)           │ (None, 56, 56, 128)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pad_4 (ZeroPadding2D)      │ (None, 57, 57, 128)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_4 (DepthwiseConv2D)     │ (None, 28, 28, 128)    │         1,152 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_4_bn                    │ (None, 28, 28, 128)    │           512 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_4_relu (ReLU)           │ (None, 28, 28, 128)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_4 (Conv2D)              │ (None, 28, 28, 256)    │        32,768 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_4_bn                    │ (None, 28, 28, 256)    │         1,024 │
│ (BatchNormalization)            │                        │               │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_pw_4_relu (ReLU)           │ (None, 28, 28, 256)    │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv_dw_5 (DepthwiseConv2D)     │ (None, 28, 28, 256)    │     

这篇关于【嵌入式AI开发】轻量级卷积神经网络MobileNet项目实战——文末完整源码工程文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/941130

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置