【算法基础实验】图论-UnionFind连通性检测之quick-find

2024-04-27 10:28

本文主要是介绍【算法基础实验】图论-UnionFind连通性检测之quick-find,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Union-Find连通性检测之quick-find

理论基础

在图论和计算机科学中,Union-Find 或并查集是一种用于处理一组元素分成的多个不相交集合(即连通分量)的情况,并能快速回答这组元素中任意两个元素是否在同一集合中的问题。Union-Find 特别适用于连通性问题,例如网络连接问题或确定图的连通分量。

Union-Find 的基本操作

Union-Find 数据结构支持两种基本操作:

  1. Union(合并): 将两个元素所在的集合合并成一个集合。
  2. Find(查找): 确定某个元素属于哪个集合,这通常涉及找到该集合的“代表元素”或“根元素”。

Union-Find 的结构

Union-Find 通常使用一个整数数组来表示,其中每个元素的值指向它的父节点,这样形成了一种树形结构。集合的“根元素”是其自己的父节点。

Union-Find 的优化技术

为了提高效率,Union-Find 实现中常用两种技术:

  1. 路径压缩(Path Compression): 在执行“查找”操作时,使路径上的每个节点都直接连接到根节点,从而压缩查找路径,减少后续操作的时间。
  2. 按秩合并(Union by Rank): 在执行“合并”操作时,总是将较小的树连接到较大的树的根节点上。这里的“秩”可以是树的深度或者树的大小。

应用示例

Union-Find 算法常用于处理动态连通性问题,如网络中的连接/断开问题或者图中连通分量的确定。例如,Kruskal 的最小生成树算法就使用 Union-Find 来选择边,以确保不形成环路。

总结

Union-Find 是解决连通性问题的一种非常高效的数据结构。它能够快速合并集合并快速判断元素之间的连通性。通过路径压缩和按秩合并的优化,Union-Find 在实际应用中可以接近常数时间完成操作。因此,它在算法竞赛、网络连接和社交网络分析等领域有广泛的应用。

数据结构

private int[] id // 分量id(以触点作为索引)
private int count // 分量数量

实验数据和算法流程

本实验使用tinyUF.txt作为实验数据,数据内容如下,一共定义了10对连通性关系

10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

实验的目的是检测数据中共有多少个连通分量,并打印每个元素所属的连通分量编号
下图是处理元素5和9的一个处理瞬间

请添加图片描述

完整流程如下
请添加图片描述

代码实现

import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdIn;public class myQuickFind
{private int[] id; // 分量id(以触点作为索引)private int count; // 分量数量public myQuickFind(int N){ // 初始化分量id数组count = N;id = new int[N];for (int i = 0; i < N; i++)id[i] = i;}public int count(){ return count; }public boolean connected(int p, int q){ return find(p) == find(q); }public int find(int p){ return id[p]; }public void union(int p, int q){ // 将p和q归并到相同的分量中int pID = find(p);int qID = find(q);// 如果p和q已经在相同的分量之中则不需要采取任何行动if (pID == qID) return;// 将p的分量重命名为q的名称for (int i = 0; i < id.length; i++)if (id[i] == pID) id[i] = qID;count--;}public static void main(String[] args){ // 解决由StdIn得到的动态连通性问题int N = StdIn.readInt(); // 读取触点数量myQuickFind qf = new myQuickFind(N); // 初始化N个分量while (!StdIn.isEmpty()){int p = StdIn.readInt();int q = StdIn.readInt(); // 读取整数对if (qf.connected(p, q)) continue; // 如果已经连通则忽略qf.union(p, q); // 归并分量}StdOut.println(qf.count() + " components");for(int i = 0;i<N;i++){StdOut.println(i + ":"+qf.find(i));}}
}

代码详解

这段代码实现了一种名为 Quick-Find 的并查集算法,用来解决动态连通性问题。下面是详细的代码解读:

类定义和变量


public class myQuickFind {private int[] id; // 分量id(以触点作为索引)private int count; // 分量数量
  • id 数组用来存储每个节点的分量标识。在 Quick-Find 中,id 数组的每个位置的值表示那个位置所属的组。
  • count 记录当前图中连通分量的数量。

构造函数


public myQuickFind(int N) {count = N;id = new int[N];for (int i = 0; i < N; i++)id[i] = i;
}

构造函数接受一个整数 N,表示图中节点的数量。初始时,每个节点自成一个连通分量,即每个节点都是自己的代表,因此 id[i] 初始化为 i

辅助方法


public int count() { return count; }
public boolean connected(int p, int q) { return find(p) == find(q); }
public int find(int p) { return id[p]; }
  • count() 返回当前连通分量的数量。
  • connected(p, q) 检查两个节点是否属于同一个连通分量。
  • find(p) 查找节点 p 的连通分量标识。

Union 操作


public void union(int p, int q) {int pID = find(p);int qID = find(q);if (pID == qID) return; // 如果p和q已经在相同的分量之中则不需要采取任何行动for (int i = 0; i < id.length; i++)if (id[i] == pID) id[i] = qID;count--;
}

union(p, q) 方法用于合并包含节点 pq 的两个连通分量。如果两者已经在同一个连通分量中,则不做任何操作。否则,遍历 id 数组,将所有属于 p 的连通分量的节点都重新标记为属于 q 的连通分量。

主函数


public static void main(String[] args) {int N = StdIn.readInt(); // 读取触点数量myQuickFind qf = new myQuickFind(N); // 初始化N个分量while (!StdIn.isEmpty()) {int p = StdIn.readInt();int q = StdIn.readInt(); // 读取整数对if (qf.connected(p, q)) continue; // 如果已经连通则忽略qf.union(p, q); // 归并分量}StdOut.println(qf.count() + " components");for(int i = 0;i<N;i++){StdOut.println(i + ":"+qf.find(i));}
}

主函数从标准输入读取节点数量和一系列整数对。对于每对整数,如果它们不属于同一个连通分量,则调用 union 方法将它们合并。程序的最终输出是图中的连通分量数量,以及每个节点的连通分量标识。

Quick-Find 的性能

Quick-Find 算法的缺点在于 union 操作的高成本,它需要 O(N) 时间来处理每次合并操作,这在处理大量操作时可能变得非常慢。尽管如此,它的 find 操作非常快,只需常数时间 O(1)。因此,这种数据结构适用于不频繁进行 union 操作但需要频繁进行连通性检查的场景。

实验

代码编译

javac myQuickFind.java

代码运行

java myQuickFind < ..\data\tinyUF.txt 
2 components
0:1
1:1
2:1
3:8
4:8
5:1
6:1
7:1
8:8
9:8

参考资料

算法(第四版) 人民邮电出版社

这篇关于【算法基础实验】图论-UnionFind连通性检测之quick-find的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/940247

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形