ROS Navigation Stack之dwa_local_planner源码分析

2024-04-27 01:58

本文主要是介绍ROS Navigation Stack之dwa_local_planner源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DWA和base_local_planner的关系

在base_local_planner包中有两个文件叫trajectory_planner.cpp 以及对应的ros实现,其和DWA是同一层的。
由于nav_core提供了统一的接口,因此我们可以先看看统一的接口有哪些,那我们便知道每一个算法里比较重要的函数有哪些。

nav_core包里的base_local_planner.h文件
//最为关键的地方,计算机器人下一刻的速度
virtual bool computeVelocityCommands(geometry_msgs::Twist& cmd_vel) = 0;
//判断是否到达目标点
virtual bool isGoalReached() = 0;
//加载全局路径
virtual bool setPlan(const std::vector<geometry_msgs::PoseStamped>& plan) = 0;
//初始化
virtual void initialize(std::string name, tf::TransformListener* tf, costmap_2d::Costmap2DROS* costmap_ros) = 0;

下面我们就先看看base_local_planner的computeVelocityCommands的主要实现框架

bool TrajectoryPlannerROS::computeVelocityCommands(geometry_msgs::Twist& cmd_vel)
{//检查初始化、检查是否已经到达目标点...略transformGlobalPlan(*tf_, global_plan_, global_pose, *costmap_, global_frame_, transformed_plan);//如果已经到达目标点,姿态还没到if (xy_tolerance_latch_ || (getGoalPositionDistance(global_pose, goal_x, goal_y) <= xy_goal_tolerance_)) {tc_->updatePlan(transformed_plan);//所以这个函数里最关键的子函数是findBestPathTrajectory path = tc_->findBestPath(global_pose, robot_vel, drive_cmds);return true;}tc_->updatePlan(transformed_plan);Trajectory path = tc_->findBestPath(global_pose, robot_vel, drive_cmds);//然后又是转换,然后就发布出速度了...
}

接下来我们看一下TrajectoryPlanner的findBestPath的实现框架,Come on~

Trajectory TrajectoryPlanner::findBestPath(tf::Stamped<tf::Pose> global_pose, tf::Stamped<tf::Pose> global_vel,tf::Stamped<tf::Pose>& drive_velocities)
{//...Trajectory best = createTrajectories(pos[0], pos[1], pos[2], vel[0], vel[1], vel[2],acc_lim_x_, acc_lim_y_, acc_lim_theta_);//...
}

顺藤摸瓜,一睹createTrajectories的内部实现,这个函数是轨迹采样算法,可以说是一个非常关键的函数。

Trajectory TrajectoryPlanner::createTrajectories(double x, double y, double theta,double vx, double vy, double vtheta,double acc_x, double acc_y, double acc_theta) 
{//检查最终点是否是有效的,判断变量在updatePlan中被赋值if( final_goal_position_valid_ ){double final_goal_dist = hypot( final_goal_x_ - x, final_goal_y_ - y );max_vel_x = min( max_vel_x, final_goal_dist / sim_time_ );}//是否使用dwa算法, sim_peroid_是1/controller_frequency_,暂时不清楚sim_period_和sim_time_的区别if (dwa_){max_vel_x = max(min(max_vel_x, vx + acc_x * sim_period_), min_vel_x_);min_vel_x = max(min_vel_x_, vx - acc_x * sim_period_);max_vel_theta = min(max_vel_th_, vtheta + acc_theta * sim_period_);min_vel_theta = max(min_vel_th_, vtheta - acc_theta * sim_period_);}else{max_vel_x = max(min(max_vel_x, vx + acc_x * sim_time_), min_vel_x_);min_vel_x = max(min_vel_x_, vx - acc_x * sim_time_);max_vel_theta = min(max_vel_th_, vtheta + acc_theta * sim_time_);min_vel_theta = max(min_vel_th_, vtheta - acc_theta * sim_time_);}//...先忽略其中的逻辑,只要知道按照不同的规则生成路径,调用的子函数是generateTrajectory
}

这个子函数的作用就是生成路径,并且评分

void TrajectoryPlanner::generateTrajectory
{//主要有两大作用://生成路径和速度vx_i = computeNewVelocity(vx_samp, vx_i, acc_x, dt);vy_i = computeNewVelocity(vy_samp, vy_i, acc_y, dt);vtheta_i = computeNewVelocity(vtheta_samp, vtheta_i, acc_theta, dt);//计算位置x_i = computeNewXPosition(x_i, vx_i, vy_i, theta_i, dt);y_i = computeNewYPosition(y_i, vx_i, vy_i, theta_i, dt);theta_i = computeNewThetaPosition(theta_i, vtheta_i, dt);//对路径进行评分if (!heading_scoring_) {//cost = pdist_scale_ * path_dist + goal_dist * gdist_scale_ + occdist_scale_ * occ_cost;} else {cost = occdist_scale_ * occ_cost + pdist_scale_ * path_dist + 0.3 * heading_diff + goal_dist * gdist_scale_;}//这里的顺序与源码不同,我觉得总分来看更有组织性//该轨迹与全局路径的相对距离path_dist = path_map_(cell_x, cell_y).target_dist;//距离目标点距离goal_dist = goal_map_(cell_x, cell_y).target_dist;//离障碍物距离double footprint_cost = footprintCost(x_i, y_i, theta_i);occ_cost = std::max(std::max(occ_cost, footprint_cost), double(costmap_.getCost(cell_x, cell_y)));
}

综上所述,其整一个逻辑顺序就是computeVelocityCommands->findBestTrajectory --> createTrajectories --> generateTrajectory

最终,选择分数最低的轨迹,发布出去。这便是整个局部规划器的实现思路和逻辑。下一篇,谈谈Costmap2D。

这篇关于ROS Navigation Stack之dwa_local_planner源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939236

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三