Shark源码分析(十一):随机森林算法

2024-04-27 00:48

本文主要是介绍Shark源码分析(十一):随机森林算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Shark源码分析(十一):随机森林算法

关于这个算法的介绍,可以参看我之前关于集成算法的博客。因为Shark中关于决策树算法只实现了CART算法,所以随机森林算法中也只包含了CART算法。如果你已经看过了我之前写的关于CART算法源码分析的博客,看到后面就会发现它与随机森林算法的代码其实差不多。只是在选择最优划分属性时多了一个随机选取候选集的过程。这也是随机森林算法的一大特点。因为CART算法既可以用于分类任务中也可以用于回归任务中,所以基于CART算法的随机森林也能用于这两个任务。这里我们只介绍其用于分类任务中的代码。

MeanModel类

这个类应该算是集成算法的基类,表示如何将多个基学习器的输出结果综合起来。该类定义在<include/shark/Models/MeanModel.h>中。

template<class ModelType> // ModelType表示基学习器的类型
class MeanModel : public AbstractModel<typename ModelType::InputType, typename ModelType::OutputType>
{
private:typedef AbstractModel<typename ModelType::InputType, typename ModelType::OutputType> base_type;
public:MeanModel():m_weightSum(0){}std::string name() const{ return "MeanModel"; }using base_type::eval;// 输出集成学习器的结果,与决策树输出的结果一样,是对于每一个类别的所属概率void eval(typename base_type::BatchInputType const& patterns, typename base_type::BatchOutputType& outputs)const{m_models[0].eval(patterns,outputs);outputs *=m_weight[0];for(std::size_t i = 1; i != m_models.size(); i++) noalias(outputs) += m_weight[i] * m_models[i](patterns);outputs /= m_weightSum;}void eval(typename base_type::BatchInputType const& patterns, typename base_type::BatchOutputType& outputs, State& state)const{eval(patterns,outputs);}RealVector parameterVector() const {return RealVector();}void setParameterVector(const RealVector& param) {SHARK_ASSERT(param.size() == 0);}void read(InArchive& archive){archive >> m_models;archive >> m_weight;archive >> m_weightSum;}void write(OutArchive& archive)const{archive << m_models;archive << m_weight;archive << m_weightSum;}void clearModels(){m_models.clear();m_weight.clear();m_weightSum = 0.0;}// 增加一个基学习器void addModel(ModelType const& model, double weight = 1.0){SHARK_CHECK(weight > 0, "Weights must be positive");m_models.push_back(model);m_weight.push_back(weight);m_weightSum+=weight;}double const& weight(std::size_t i)const{return m_weight[i];}void setWeight(std::size_t i, double newWeight){m_weightSum=newWeight - m_weight[i];m_weight[i] = newWeight;}std::size_t numberOfModels()const{return m_models.size();}protected:// 表示所有的基学习器,这里要求它们的类型是一致的,但是在实际的应用中,其实是可以不一样的std::vector<ModelType> m_models;// 表示各个基学习器的权重std::vector<double> m_weight;// 所有权重之和double m_weightSum;
};

RFClassifier类

该类是用来表示一个随机森林,定义在<include/shark/Models/Trees/RFClassifier.h>中。

class RFClassifier : public MeanModel<CARTClassifier<RealVector> >
{
public:std::string name() const{ return "RFClassifier"; }// 计算模型的平均OOB误差,将基学习器的OOB误差累加起来,再除以基学习器的个数void computeOOBerror(){std::size_t n_trees = numberOfModels();m_OOBerror = 0;for(std::size_t j=0;j!=n_trees;++j){m_OOBerror += m_models[j].OOBerror();}m_OOBerror /= n_trees;}// 综合基学习器每一维的重要程度,得到集成学习器每一维的重要程度void computeFeatureImportances(){m_featureImportances.resize(m_inputDimension);std::size_t n_trees = numberOfModels();for(std::size_t i=0;i!=m_inputDimension;++i){m_featureImportances[i] = 0;for(std::size_t j=0;j!=n_trees;++j){m_featureImportances[i] += m_models[j].featureImportances()[i];}m_featureImportances[i] /= n_trees;}}double const OOBerror() const {return m_OOBerror;}RealVector const& featureImportances() const {return m_featureImportances;}// 统计对于所有的基学习器,每一个特征在选择最优划分属性时被使用的次数UIntVector countAttributes() const {std::size_t n = m_models.size();if(!n) return UIntVector();UIntVector r = m_models[0].countAttributes();for(std::size_t i=1; i&l

这篇关于Shark源码分析(十一):随机森林算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939114

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺