Shark源码分析(十一):随机森林算法

2024-04-27 00:48

本文主要是介绍Shark源码分析(十一):随机森林算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Shark源码分析(十一):随机森林算法

关于这个算法的介绍,可以参看我之前关于集成算法的博客。因为Shark中关于决策树算法只实现了CART算法,所以随机森林算法中也只包含了CART算法。如果你已经看过了我之前写的关于CART算法源码分析的博客,看到后面就会发现它与随机森林算法的代码其实差不多。只是在选择最优划分属性时多了一个随机选取候选集的过程。这也是随机森林算法的一大特点。因为CART算法既可以用于分类任务中也可以用于回归任务中,所以基于CART算法的随机森林也能用于这两个任务。这里我们只介绍其用于分类任务中的代码。

MeanModel类

这个类应该算是集成算法的基类,表示如何将多个基学习器的输出结果综合起来。该类定义在<include/shark/Models/MeanModel.h>中。

template<class ModelType> // ModelType表示基学习器的类型
class MeanModel : public AbstractModel<typename ModelType::InputType, typename ModelType::OutputType>
{
private:typedef AbstractModel<typename ModelType::InputType, typename ModelType::OutputType> base_type;
public:MeanModel():m_weightSum(0){}std::string name() const{ return "MeanModel"; }using base_type::eval;// 输出集成学习器的结果,与决策树输出的结果一样,是对于每一个类别的所属概率void eval(typename base_type::BatchInputType const& patterns, typename base_type::BatchOutputType& outputs)const{m_models[0].eval(patterns,outputs);outputs *=m_weight[0];for(std::size_t i = 1; i != m_models.size(); i++) noalias(outputs) += m_weight[i] * m_models[i](patterns);outputs /= m_weightSum;}void eval(typename base_type::BatchInputType const& patterns, typename base_type::BatchOutputType& outputs, State& state)const{eval(patterns,outputs);}RealVector parameterVector() const {return RealVector();}void setParameterVector(const RealVector& param) {SHARK_ASSERT(param.size() == 0);}void read(InArchive& archive){archive >> m_models;archive >> m_weight;archive >> m_weightSum;}void write(OutArchive& archive)const{archive << m_models;archive << m_weight;archive << m_weightSum;}void clearModels(){m_models.clear();m_weight.clear();m_weightSum = 0.0;}// 增加一个基学习器void addModel(ModelType const& model, double weight = 1.0){SHARK_CHECK(weight > 0, "Weights must be positive");m_models.push_back(model);m_weight.push_back(weight);m_weightSum+=weight;}double const& weight(std::size_t i)const{return m_weight[i];}void setWeight(std::size_t i, double newWeight){m_weightSum=newWeight - m_weight[i];m_weight[i] = newWeight;}std::size_t numberOfModels()const{return m_models.size();}protected:// 表示所有的基学习器,这里要求它们的类型是一致的,但是在实际的应用中,其实是可以不一样的std::vector<ModelType> m_models;// 表示各个基学习器的权重std::vector<double> m_weight;// 所有权重之和double m_weightSum;
};

RFClassifier类

该类是用来表示一个随机森林,定义在<include/shark/Models/Trees/RFClassifier.h>中。

class RFClassifier : public MeanModel<CARTClassifier<RealVector> >
{
public:std::string name() const{ return "RFClassifier"; }// 计算模型的平均OOB误差,将基学习器的OOB误差累加起来,再除以基学习器的个数void computeOOBerror(){std::size_t n_trees = numberOfModels();m_OOBerror = 0;for(std::size_t j=0;j!=n_trees;++j){m_OOBerror += m_models[j].OOBerror();}m_OOBerror /= n_trees;}// 综合基学习器每一维的重要程度,得到集成学习器每一维的重要程度void computeFeatureImportances(){m_featureImportances.resize(m_inputDimension);std::size_t n_trees = numberOfModels();for(std::size_t i=0;i!=m_inputDimension;++i){m_featureImportances[i] = 0;for(std::size_t j=0;j!=n_trees;++j){m_featureImportances[i] += m_models[j].featureImportances()[i];}m_featureImportances[i] /= n_trees;}}double const OOBerror() const {return m_OOBerror;}RealVector const& featureImportances() const {return m_featureImportances;}// 统计对于所有的基学习器,每一个特征在选择最优划分属性时被使用的次数UIntVector countAttributes() const {std::size_t n = m_models.size();if(!n) return UIntVector();UIntVector r = m_models[0].countAttributes();for(std::size_t i=1; i&l

这篇关于Shark源码分析(十一):随机森林算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939114

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重