【深度学习】YOLOv5,烟雾和火焰,目标检测,防火检测,森林火焰检测

2024-04-24 08:52

本文主要是介绍【深度学习】YOLOv5,烟雾和火焰,目标检测,防火检测,森林火焰检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 数据收集和数据标注
  • 查看标注好的数据的脚本
  • 下载yolov5
  • 创建 dataset.yaml
  • 训练参数
  • 开始训练
  • yolov5n训练
  • 训练后的权重下载
  • gradio部署

数据收集和数据标注

搜集数据集2w张。

pip install labelme
labelme
然后标注矩形框和类别。

下载数据请看这里:

https://qq742971636.blog.csdn.net/article/details/137999662

三个标签,各个标签的数量:

火焰框28852个
烟雾框26716个
其他红旗71个框
在这里插入图片描述

查看标注好的数据的脚本

输入图片路径和标签路径可以一张一张浏览照片:

import os
import cv2
import numpy as np# 图像和标签文件夹路径
image_folder = r'F:\BaiduNetdiskDownload\fireandsmoke_last\fireandsmoke_last\images_choose'
label_folder = r'F:\BaiduNetdiskDownload\fireandsmoke_last\fireandsmoke_last\labels'# 定义类别颜色(这里假设有两个类别,你可以根据实际情况扩展)
class_colors = [(0, 255, 0), (0, 0, 255), (255, 0, 0)]
class_name = ['fire', 'smoke']
# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith('.jpg') or f.endswith('.png')]# 遍历图像文件
for image_file in image_files:image_path = os.path.join(image_folder, image_file)label_path = os.path.join(label_folder, os.path.splitext(image_file)[0] + '.txt')# 检查是否存在标签文件if os.path.exists(label_path):# 读取图像image = cv2.imread(image_path)# 读取标签内容with open(label_path, 'r') as file:lines = file.readlines()class_id_all = []# 遍历标签行for line in lines:values = line.split()class_id = int(values[0])x_center = float(values[1]) * image.shape[1]y_center = float(values[2]) * image.shape[0]width = float(values[3]) * image.shape[1]height = float(values[4]) * image.shape[0]# 计算边界框的左上角和右下角坐标x1 = int(x_center - width / 2)y1 = int(y_center - height / 2)x2 = int(x_center + width / 2)y2 = int(y_center + height / 2)# 获取当前类别的颜色color = class_colors[class_id]# 在图像上绘制矩形框和类别标签数字cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)cv2.putText(image, class_name[class_id], (x1, y1 + 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)class_id_all.append(class_id)# if 2 not in class_id_all:#     continue# 等比缩放到最长边为800max_size = 800if image.shape[0] > image.shape[1]:scale = max_size / image.shape[0]else:scale = max_size / image.shape[1]image = cv2.resize(image, (int(image.shape[1] * scale), int(image.shape[0] * scale)))# 显示图像cv2.imshow('Image', image)# 等待按键输入,按下任意键跳到下一张图cv2.waitKey(0)cv2.destroyAllWindows()

比如:
在这里插入图片描述
在这里插入图片描述

下载yolov5

下载yolov5

git clone https://github.com/ultralytics/yolov5.git
cd yolov5/

创建环境:

conda create -n py310_yolov5 python=3.10 -y
conda activate py310_yolov5

装一个可以用的torch:


# CUDA 11.8
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia

取消这2个:
在这里插入图片描述

然后安装一些别的包:

pip install -r requirements.txt  # install

随后更多内容参考官网这里的训练指导:

https://docs.ultralytics.com/zh/yolov5/tutorials/train_custom_data/#before-you-start

创建 dataset.yaml

创建文件:

cd yolov5/data
cp coco128.yaml fire_smoke.yaml

将fire_smoke.yaml修改为这样:


path: /ssd/xiedong/fireandsmoke_last/
train: images
val: images
test: # test images (optional)# Classes
names:0: fire1: smoke2: other

训练参数

使用python train.py --help查看训练参数:

# python train.py --help
警告 ⚠️ Ultralytics 设置已重置为默认值。这可能是由于您的设置存在问题或最近 Ultralytics 包更新导致的。
使用 'yolo settings' 命令或查看 '/home/xiedong/.config/Ultralytics/settings.yaml' 文件来查看设置。
使用 'yolo settings key=value' 命令来更新设置,例如 'yolo settings runs_dir=path/to/dir'。更多帮助请参考 https://docs.ultralytics.com/quickstart/#ultralytics-settings。
用法: train.py [-h] [--weights WEIGHTS] [--cfg CFG] [--data DATA] [--hyp HYP] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--imgsz IMGSZ] [--rect] [--resume [RESUME]][--nosave] [--noval] [--noautoanchor] [--noplots] [--evolve [EVOLVE]] [--evolve_population EVOLVE_POPULATION] [--resume_evolve RESUME_EVOLVE][--bucket BUCKET] [--cache [CACHE]] [--image-weights] [--device DEVICE] [--multi-scale] [--single-cls] [--optimizer {SGD,Adam,AdamW}] [--sync-bn][--workers WORKERS] [--project PROJECT] [--name NAME] [--exist-ok] [--quad] [--cos-lr] [--label-smoothing LABEL_SMOOTHING] [--patience PATIENCE][--freeze FREEZE [FREEZE ...]] [--save-period SAVE_PERIOD] [--seed SEED] [--local_rank LOCAL_RANK] [--entity ENTITY] [--upload_dataset [UPLOAD_DATASET]][--bbox_interval BBOX_INTERVAL] [--artifact_alias ARTIFACT_ALIAS] [--ndjson-console] [--ndjson-file]选项:-h, --help            显示帮助信息并退出--weights WEIGHTS     初始权重路径--cfg CFG             模型配置文件路径--data DATA           数据集配置文件路径--hyp HYP             超参数路径--epochs EPOCHS       总训练轮数--batch-size BATCH_SIZE所有 GPU 的总批量大小,-1 表示自动批处理--imgsz IMGSZ, --img IMGSZ, --img-size IMGSZ训练、验证图像大小(像素)--rect                矩形训练--resume [RESUME]     恢复最近的训练--nosave              仅保存最终检查点--noval               仅验证最终轮次--noautoanchor        禁用 AutoAnchor--noplots             不保存绘图文件--evolve [EVOLVE]     为 x 代演进超参数--evolve_population EVOLVE_POPULATION加载种群的位置--resume_evolve RESUME_EVOLVE从上一代演进恢复--bucket BUCKET       gsutil 存储桶--cache [CACHE]       图像缓存 ram/disk--image-weights       在训练时使用加权图像选择--device DEVICE       cuda 设备,例如 00,1,2,3 或 cpu--multi-scale         图像大小变化范围为 +/- 50%--single-cls          将多类数据作为单类训练--optimizer {SGD,Adam,AdamW}优化器--sync-bn             使用 SyncBatchNorm,仅在 DDP 模式下可用--workers WORKERS     最大数据加载器工作进程数(每个 DDP 模式中的 RANK)--project PROJECT     保存到项目/名称--name NAME           保存到项目/名称--exist-ok            存在的项目/名称正常,不增加--quad                四通道数据加载器--cos-lr              余弦学习率调度器--label-smoothing LABEL_SMOOTHING标签平滑 epsilon--patience PATIENCE   EarlyStopping 耐心(未改善的轮次)--freeze FREEZE [FREEZE ...]冻结层:backbone=10, first3=0 1 2--save-period SAVE_PERIOD每 x 轮保存检查点(如果 < 1 则禁用)--seed SEED           全局训练种子--local_rank LOCAL_RANK自动 DDP 多 GPU 参数,不要修改--entity ENTITY       实体--upload_dataset [UPLOAD_DATASET]上传数据,"val" 选项--bbox_interval BBOX_INTERVAL设置边界框图像记录间隔--artifact_alias ARTIFACT_ALIAS要使用的数据集 artifact 版本--ndjson-console      将 ndjson 记录到控制台--ndjson-file         将 ndjson 记录到文件

开始训练

多卡训练:

python -m torch.distributed.run --nproc_per_node 4 train.py --weights yolov5m.pt --data fire_smoke.yaml --batch-size 300  --epochs 50 --img 640 --sync-bn --name fm0423 --cos-lr --device 0,1,2,3

正常启动训练:

在这里插入图片描述

少量图片损坏不用管:

在这里插入图片描述

我的数据集很难,是野外数据,可见刚开始指标并不好:

在这里插入图片描述
训练结束:

在这里插入图片描述

yolov5n训练

多卡训练:

python -m torch.distributed.run --nproc_per_node 4 train.py --weights yolov5n.pt --data fire_smoke.yaml --batch-size 1200  --epochs 50 --img 640 --sync-bn --name fm0423_yolov5n_ --cos-lr --device 0,1,2,3

模型太小,yolov5n的效果欠佳了:

在这里插入图片描述

训练后的权重下载

yolov5m的训练结果文件:

在这里插入图片描述

yolov5n的训练结果文件:
在这里插入图片描述

权重下载请看这里:

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

gradio部署

import gradio as gr
import time
import torch
from PIL import Imagedef detect_objects(img):time1 = time.time()# Run inferenceresults = model(img)time2 = time.time()print(f"Time taken for inference: {time2 - time1:.2f} seconds")# Print JSONprint(results.pandas().xyxy[0].to_json(orient="records"))results.render()im_pil = Image.fromarray(results.ims[0])return im_pil# Model loading
model = torch.hub.load('/data/xiedong/eff_train/yolov5-master','custom',path='./best.pt',source='local',device='cuda:0',force_reload=True)inputs = gr.Image(label="Input Image", type="pil")
outputs = gr.Image(label="Output Image with Detections", type="pil")title = "Object Detection App"
description = "Upload an image, and the app will detect objects in the image."# examples = ["ok.jpg"]
# 当前目录的jpg文件
import osfiles = os.listdir()
examples = [f for f in files if f.endswith(".jpg")]gr.Interface(detect_objects, inputs, outputs, title=title, description=description, examples=examples).launch(server_name="0.0.0.0", server_port=7873)

部署后打开网页即可尝试:

在这里插入图片描述

这篇关于【深度学习】YOLOv5,烟雾和火焰,目标检测,防火检测,森林火焰检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931292

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操