即插即用的涨点模块之变体卷积(Ghost卷积)详解及代码,可应用于检测、分割、分类等各种算法领域

本文主要是介绍即插即用的涨点模块之变体卷积(Ghost卷积)详解及代码,可应用于检测、分割、分类等各种算法领域,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、GhostConv结构

二、GhostConv计算流程

三、GhostConv参数

四、代码详解


前言

GhostNet: More Features from Cheap Operations

来源:CVPR2020

官方代码:https://github.com/huawei-noah/ghostnet

        Ghost 模块是一种针对卷积神经网络(CNN)的创新设计,特别适用于嵌入式设备,这些设备通常具有有限的内存和计算资源。Ghost 模块的核心思想是利用已有的特征图(feature maps)通过低成本的线性变换生成更多的“幽灵”特征图(ghost feature maps),从而提高网络的计算效率。


一、GhostConv结构

        GhostConv分为三步:常规卷积、Ghost生成和特征图拼接,GhostConv结构如图1所示,图中a图为常规卷积操作,而b为GhostConv模型操作。常规卷积操作,对输入特征图进行卷积,得到输出,与普通卷积神经网络相比,Ghost模块降低了所需的参数数量和计算复杂度。GhostNet先使用普通卷积(1*1*M),批量归一化和一个激活函数Relu,将输入图片进行通道数压缩,生成一些固有的特征映射,然后将特征图应用一系列简单的线性操作(单位映射与线性变换并行以保持固有的特征映射)φk获得更多特征图,增加特征。其中廉价操作φk由Depthwise Convolution(Depthwise Convolution是一个卷积核负责一个通道,一个通道只被一个卷积核卷积)和批量归一化和一个激活函数Relu组合 ,然后将不同特征图,通过concat将获得的特征图和第一步中通过普通卷积,批量归一化和激活函数Relu组合,最终获得的特征图即为output。实验结果表明,提出的Ghost模块能够降低通用卷积层的计算成本,同时保持相似的识别性能,并且GhostNets可以在移动设备上快速推理的各种任务上超越最先进的高效深度模型。利用Ghost模块优势,设计Ghost bottleneck,结构如图2所示。Ghost bottleneck 主要由两个堆叠的ghost module组成,第一个ghost module作为扩展层增加通道数量,第二个ghost module减少了通道的数量以匹配第一步的输入,使两者可以进行元素加法。图中分成了两种,一种为步幅=1的,另一种为步幅=2的,第二种则在两个ghost module中间插入了一个步幅为2的深度卷积。

图1:GhostNet结构图

图2 Ghost bottleneck结构

使用 GhostConv模块的主要优势包括:

降低计算负载:通过使用线性变换从现有特征图生成更多特征图,相较于依赖额外的卷积层,大大减少了所需的计算量。

高效利用资源:这种方法最大限度地利用了可用的计算和内存资源,特别适合资源有限的嵌入式系统。

易于适应:由于其模块化设计,Ghost 模块可以无缝集成到现有的 CNN 架构中,使其成为提高效率的通用解决方案。

二、GhostConv计算流程

给定一个输入(其中c为通道数,h为高度,w为宽度),经过的卷积核,得到特征图

普通卷积的参数量为: ,计算量为:

GhostConv的参数量为:  ,计算量为:

其中d⋅d为线性运算的卷积核大小,s为线性变换次数,s<<c。是第一次变换时的输出通道数目,s-1是因为恒等映射不需要进行计算,但它也算做第二变换中的一部分,因此Ghost 模块之所以能省计算量。为普通卷积与GhostConv卷积计算量比,为参数之比。

 

三、GhostConv参数

利用thop库的profile函数计算FLOPs和Param。Input:(64,32,32),卷积核(128,3,3)

Module

FLOPs

Param

GhostConv

38862848

37696

标准卷积

75497472

73856

四、代码详解

import torch.nn as nn
import torchclass GhostModule(nn.Module):def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):super(GhostModule, self).__init__()self.oup = ouphidden_channels = oup // rationew_channels = hidden_channels*(ratio-1)self.primary_conv = nn.Sequential(nn.Conv2d(inp, hidden_channels, kernel_size, stride, kernel_size//2, bias=False),nn.BatchNorm2d(hidden_channels),nn.ReLU(inplace=True) if relu else nn.Sequential(),)self.cheap_operation = nn.Sequential(nn.Conv2d(hidden_channels, new_channels, dw_size, 1, dw_size//2, groups=hidden_channels, bias=False),nn.BatchNorm2d(new_channels),nn.ReLU(inplace=True) if relu else nn.Sequential(),)def forward(self, x):x1 = self.primary_conv(x)x2 = self.cheap_operation(x1)out = torch.cat([x1,x2], dim=1)return outif __name__ == '__main__':from  torchsummary import summaryfrom thop import profilemodel = GhostModule(64, 128, 3, 2, 3, 1, True)summary(model, (64, 32, 32), device='cpu')flops, params = profile(model, inputs=(torch.randn(1, 64, 32, 32),))print(f"FLOPs: {flops}, Params: {params}")

这篇关于即插即用的涨点模块之变体卷积(Ghost卷积)详解及代码,可应用于检测、分割、分类等各种算法领域的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924067

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个