即插即用的涨点模块之变体卷积(Ghost卷积)详解及代码,可应用于检测、分割、分类等各种算法领域

本文主要是介绍即插即用的涨点模块之变体卷积(Ghost卷积)详解及代码,可应用于检测、分割、分类等各种算法领域,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、GhostConv结构

二、GhostConv计算流程

三、GhostConv参数

四、代码详解


前言

GhostNet: More Features from Cheap Operations

来源:CVPR2020

官方代码:https://github.com/huawei-noah/ghostnet

        Ghost 模块是一种针对卷积神经网络(CNN)的创新设计,特别适用于嵌入式设备,这些设备通常具有有限的内存和计算资源。Ghost 模块的核心思想是利用已有的特征图(feature maps)通过低成本的线性变换生成更多的“幽灵”特征图(ghost feature maps),从而提高网络的计算效率。


一、GhostConv结构

        GhostConv分为三步:常规卷积、Ghost生成和特征图拼接,GhostConv结构如图1所示,图中a图为常规卷积操作,而b为GhostConv模型操作。常规卷积操作,对输入特征图进行卷积,得到输出,与普通卷积神经网络相比,Ghost模块降低了所需的参数数量和计算复杂度。GhostNet先使用普通卷积(1*1*M),批量归一化和一个激活函数Relu,将输入图片进行通道数压缩,生成一些固有的特征映射,然后将特征图应用一系列简单的线性操作(单位映射与线性变换并行以保持固有的特征映射)φk获得更多特征图,增加特征。其中廉价操作φk由Depthwise Convolution(Depthwise Convolution是一个卷积核负责一个通道,一个通道只被一个卷积核卷积)和批量归一化和一个激活函数Relu组合 ,然后将不同特征图,通过concat将获得的特征图和第一步中通过普通卷积,批量归一化和激活函数Relu组合,最终获得的特征图即为output。实验结果表明,提出的Ghost模块能够降低通用卷积层的计算成本,同时保持相似的识别性能,并且GhostNets可以在移动设备上快速推理的各种任务上超越最先进的高效深度模型。利用Ghost模块优势,设计Ghost bottleneck,结构如图2所示。Ghost bottleneck 主要由两个堆叠的ghost module组成,第一个ghost module作为扩展层增加通道数量,第二个ghost module减少了通道的数量以匹配第一步的输入,使两者可以进行元素加法。图中分成了两种,一种为步幅=1的,另一种为步幅=2的,第二种则在两个ghost module中间插入了一个步幅为2的深度卷积。

图1:GhostNet结构图

图2 Ghost bottleneck结构

使用 GhostConv模块的主要优势包括:

降低计算负载:通过使用线性变换从现有特征图生成更多特征图,相较于依赖额外的卷积层,大大减少了所需的计算量。

高效利用资源:这种方法最大限度地利用了可用的计算和内存资源,特别适合资源有限的嵌入式系统。

易于适应:由于其模块化设计,Ghost 模块可以无缝集成到现有的 CNN 架构中,使其成为提高效率的通用解决方案。

二、GhostConv计算流程

给定一个输入(其中c为通道数,h为高度,w为宽度),经过的卷积核,得到特征图

普通卷积的参数量为: ,计算量为:

GhostConv的参数量为:  ,计算量为:

其中d⋅d为线性运算的卷积核大小,s为线性变换次数,s<<c。是第一次变换时的输出通道数目,s-1是因为恒等映射不需要进行计算,但它也算做第二变换中的一部分,因此Ghost 模块之所以能省计算量。为普通卷积与GhostConv卷积计算量比,为参数之比。

 

三、GhostConv参数

利用thop库的profile函数计算FLOPs和Param。Input:(64,32,32),卷积核(128,3,3)

Module

FLOPs

Param

GhostConv

38862848

37696

标准卷积

75497472

73856

四、代码详解

import torch.nn as nn
import torchclass GhostModule(nn.Module):def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):super(GhostModule, self).__init__()self.oup = ouphidden_channels = oup // rationew_channels = hidden_channels*(ratio-1)self.primary_conv = nn.Sequential(nn.Conv2d(inp, hidden_channels, kernel_size, stride, kernel_size//2, bias=False),nn.BatchNorm2d(hidden_channels),nn.ReLU(inplace=True) if relu else nn.Sequential(),)self.cheap_operation = nn.Sequential(nn.Conv2d(hidden_channels, new_channels, dw_size, 1, dw_size//2, groups=hidden_channels, bias=False),nn.BatchNorm2d(new_channels),nn.ReLU(inplace=True) if relu else nn.Sequential(),)def forward(self, x):x1 = self.primary_conv(x)x2 = self.cheap_operation(x1)out = torch.cat([x1,x2], dim=1)return outif __name__ == '__main__':from  torchsummary import summaryfrom thop import profilemodel = GhostModule(64, 128, 3, 2, 3, 1, True)summary(model, (64, 32, 32), device='cpu')flops, params = profile(model, inputs=(torch.randn(1, 64, 32, 32),))print(f"FLOPs: {flops}, Params: {params}")

这篇关于即插即用的涨点模块之变体卷积(Ghost卷积)详解及代码,可应用于检测、分割、分类等各种算法领域的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924067

相关文章

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Java中的JSONObject详解

《Java中的JSONObject详解》:本文主要介绍Java中的JSONObject详解,需要的朋友可以参考下... Java中的jsONObject详解一、引言在Java开发中,处理JSON数据是一种常见的需求。JSONObject是处理JSON对象的一个非常有用的类,它提供了一系列的API来操作J

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab