【深度学习实战(11)】搭建自己的dataset和dataloader

2024-04-21 17:04

本文主要是介绍【深度学习实战(11)】搭建自己的dataset和dataloader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、dataset和dataloader要点说明

在我们搭建自己的网络时,往往需要定义自己的datasetdataloader,将图像和标签数据送入模型。
(1)在我们定义dataset时,需要继承torch.utils.data.dataset,再重写三个方法:

  • init方法,主要用来定义数据的预处理
  • getitem方法,数据增强;返回数据的item和label
  • len方法,返回数据数量

(2)在我们定义dataloader时,需要考虑下面几个参数:

  • dataset :使用哪个数据集
  • batch_size:将数据集拆成一组多少个进行训练
  • shuffle:是否需要打乱数据
  • num_workers:几个mini_batch并行计算,一般<=你的电脑cpu数目
  • collect_fn:数据打包方式

(3)通过迭代的方式,按批次,获取dataloader中的数据

(4)关系图

在这里插入图片描述

二、核心代码框架

import os
import cv2
from torchvision import transforms
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader# -------------------------------------------------------------#
#   自定义dataset需要继承torch.utils.data.dataset,
#   再重写def __init__,def __len__,def __getitem__三个方法
# -------------------------------------------------------------#
class YourDataset(Dataset):def __init__(self,  root_path):super(YourDataset, self).__init__()self.root_path = root_path#-------------------------------------------------------------------------##   获取样本名,以jpg原始图片为参考,修改后缀名为json,png,获取json,png标签文件路径#-------------------------------------------------------------------------#self.sample_names = []jpg_path = os.path.join(os.path.join(self.root_path, "images"),)for file in os.listdir(jpg_path):if file.endswith(".jpg"):self.sample_names.append(os.path.splitext(file)[0]) # 去掉.jsondef __len__(self):#----------------------##   返回数据数量#----------------------#return len(self.sample_names)def __getitem__(self, index):name = self.sample_names[index]# ----------------------##   读取图像# ----------------------#img_path = os.path.join(os.path.join(self.root_path, "images"), name + '.jpg')image = cv2.imread(img_path)# ----------------------##   读取标签# ----------------------#label_path = os.path.join(os.path.join(self.root_path, "jsons"), name + '.json')with open(label_path) as label_file:points = self.get_data_from_json(label_file)#----------------------##   图像数据增强#----------------------#image = self.random_color(image)#----------------------##   标签归一化#----------------------#labels = self.convert_labels(points)return image,  labels# -------------------------------------#
#   图片和标签格式转换后,按批次(batch)打包
# -------------------------------------#
def dataloader_collate_fn(batch):images = []labels = []for img, label in batch:images.append(transforms.ToTensor()(img))labels.append(label)return images, labelsif __name__ == '__main__':# -------------------------------------##   构建dataset# -------------------------------------#path = './data/train'train_dataset = YourDataset(path)# -------------------------------------##   构建Dataloader# -------------------------------------#dataset = train_datasetbatch_size = 32shuffle = Truenum_workers = 0collate_fn = dataloader_collate_fnsampler = Nonetrain_gen = DataLoader(dataset=dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,drop_last=True, collate_fn=collate_fn, sampler=sampler)# ---------------------------------------------##   通过迭代的方式,一批一批读取训练集中的图像和标签数据# ---------------------------------------------#for iter, batch in enumerate(train_gen):images,  labels = batch

这篇关于【深度学习实战(11)】搭建自己的dataset和dataloader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923592

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库