NASA数据集——TANSO-FTS 运行前 11 年收集的测量数据中得出二氧化碳(CO2)干空气摩尔分数(XCO2)的估计值

本文主要是介绍NASA数据集——TANSO-FTS 运行前 11 年收集的测量数据中得出二氧化碳(CO2)干空气摩尔分数(XCO2)的估计值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3 (ACOS_L2_Lite_FP) at GES DISC

简介

ACOS Lite 文件包含经过偏差校正的 XCO2 以及其他选定字段的每日汇总文件。ACOS 2 级标准产品(ACOS_L2S)的轨道颗粒被用作输入。

ACOS "数据集包含所有探测数据的二氧化碳(CO2)柱平均干空气摩尔分数,并尝试对其进行检索。这些是 OCO 项目使用 TANSO-FTS 光谱辐射提供的最高级别产品。

日本宇宙航空研究开发机构的 GOSAT 小组制作 GOSAT TANSO-FTS 1B (L1B) 级数据产品,供内部使用并分发给欧空局和美国航天局等合作伙伴。这些经过校准的产品由 OCO 项目用额外的地理位置信息和进一步的修正进行扩充。这样制作的 1B 级产品(含校准辐射量和地理定位)是 "ACOS "2 级制作过程的输入。

摘要

日本温室气体观测卫星(GOSAT)上的碳观测热和近红外传感器-傅立叶变换光谱仪(TANSO-FTS)自 2009 年 4 月以来一直在返回数据。利用第 9 版(v9)空间大气碳观测(ACOS)二级全物理(L2FP)检索算法(Kiel 等人,2019 年),从 TANSO-FTS 运行前 11 年收集的测量数据中得出二氧化碳(CO2)干空气摩尔分数(XCO2)的估计值。利用总碳柱观测网络(TCCON)得出的估算值以及一套不吸收卫星二氧化碳的全球大气反演系统(模式)模拟值,对 L2FP XCO2 产品的偏差校正和质量过滤进行了评估。此外,还将第 9 版 ACOS GOSAT XCO2 结果与 NASA 轨道碳观测站-2(OCO-2)使用第 10 版(v10)ACOS L2FP 算法得出的 XCO2 估算值进行了比较。

这些测试表明,与较早的 v7.3 ACOS GOSAT 产品相比,v9 ACOS GOSAT XCO2 产品在吞吐量、散度和偏差方面都有所改进。在 GOSAT 到 2020 年 6 月收集的 3,700 万个探测数据中,大约 20% 在筛选云层和其他伪影后被选中进行 v9 L2FP 算法处理。经过后处理,5.4%的探测结果(37×106 个中的 2×106)被赋予 "良好 "XCO2 质量标志,而 v7.3 中的比例为 3.9%(24×106 个中的 <1×106 )。经过质量过滤和偏差校正后,ACOS GOSAT v9 与 TCCON 和模式之间的 XCO2 差异(1σ)为:海洋闪烁观测值约为百万分之 1,陆地观测值约为百万分之 1 至 1.5。TCCON 和模式的全球平均偏差小于约 0.2 ppm。与 v10 OCO-2 XCO2 产品相比,陆地观测的季节平均偏差约为 0.1 ppm。然而,对于海洋闪烁观测数据,相对于 OCO-2 的季节平均偏差在 0.2 到 0.6 ppm 之间,且随时间和纬度变化很大。

美国宇航局戈达德地球科学数据和信息服务中心(GES-DISC)提供了 ACOS GOSAT v9 XCO2 数据的每轨道完整格式(https://doi.org/10.5067/OSGTIL9OV0PN,OCO-2 科学小组等,2019b)和每日精简格式(https://doi.org/10.5067/VWSABTO7ZII4,OCO-2 科学小组等,2019a)。此外,还生成了一套新的月度超级精简文件,其中仅包含每次卫星观测的最基本变量,为入门级用户提供了一个轻量级卫星产品,供其进行初步探索(CaltechDATA,https://doi.org/10.22002/D1.2178,Eldering,2021)。v9 ACOS 数据用户指南》(DUG)介绍了 GOSAT 数据的最佳使用方法(O'Dell 等人,2020 年)。GOSAT v9 数据集对于研究跨越整整十年或更长时间的碳循环现象应该特别有用,并可作为 2014 年 9 月开始的较短的 OCO-2 v10 数据集的有益补充。

数据信息

Shortname:

ACOS_L2_Lite_FP

Longname:

ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3

Version:

7.3

Format:

netCDF

Spatial Coverage:

-180.0,-90.0,180.0,90.0

Temporal Coverage:

2009-04-21 to  2016-06-02

File Size:

50 MB per file

Data Resolution

Spatial:

10.5 km x 10.5 km

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ACOS_L2_Lite_FP",cloud_hosted=True,bounding_box=(-180, -90, 180, 90),temporal=("2009-04-20", "2020-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

OCO-2 Science Team/Michael Gunson, Annmarie Eldering (2016), ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], GES DISC

GES DISC 

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集——TANSO-FTS 运行前 11 年收集的测量数据中得出二氧化碳(CO2)干空气摩尔分数(XCO2)的估计值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922768

相关文章

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X