NASA数据集——TANSO-FTS 运行前 11 年收集的测量数据中得出二氧化碳(CO2)干空气摩尔分数(XCO2)的估计值

本文主要是介绍NASA数据集——TANSO-FTS 运行前 11 年收集的测量数据中得出二氧化碳(CO2)干空气摩尔分数(XCO2)的估计值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3 (ACOS_L2_Lite_FP) at GES DISC

简介

ACOS Lite 文件包含经过偏差校正的 XCO2 以及其他选定字段的每日汇总文件。ACOS 2 级标准产品(ACOS_L2S)的轨道颗粒被用作输入。

ACOS "数据集包含所有探测数据的二氧化碳(CO2)柱平均干空气摩尔分数,并尝试对其进行检索。这些是 OCO 项目使用 TANSO-FTS 光谱辐射提供的最高级别产品。

日本宇宙航空研究开发机构的 GOSAT 小组制作 GOSAT TANSO-FTS 1B (L1B) 级数据产品,供内部使用并分发给欧空局和美国航天局等合作伙伴。这些经过校准的产品由 OCO 项目用额外的地理位置信息和进一步的修正进行扩充。这样制作的 1B 级产品(含校准辐射量和地理定位)是 "ACOS "2 级制作过程的输入。

摘要

日本温室气体观测卫星(GOSAT)上的碳观测热和近红外传感器-傅立叶变换光谱仪(TANSO-FTS)自 2009 年 4 月以来一直在返回数据。利用第 9 版(v9)空间大气碳观测(ACOS)二级全物理(L2FP)检索算法(Kiel 等人,2019 年),从 TANSO-FTS 运行前 11 年收集的测量数据中得出二氧化碳(CO2)干空气摩尔分数(XCO2)的估计值。利用总碳柱观测网络(TCCON)得出的估算值以及一套不吸收卫星二氧化碳的全球大气反演系统(模式)模拟值,对 L2FP XCO2 产品的偏差校正和质量过滤进行了评估。此外,还将第 9 版 ACOS GOSAT XCO2 结果与 NASA 轨道碳观测站-2(OCO-2)使用第 10 版(v10)ACOS L2FP 算法得出的 XCO2 估算值进行了比较。

这些测试表明,与较早的 v7.3 ACOS GOSAT 产品相比,v9 ACOS GOSAT XCO2 产品在吞吐量、散度和偏差方面都有所改进。在 GOSAT 到 2020 年 6 月收集的 3,700 万个探测数据中,大约 20% 在筛选云层和其他伪影后被选中进行 v9 L2FP 算法处理。经过后处理,5.4%的探测结果(37×106 个中的 2×106)被赋予 "良好 "XCO2 质量标志,而 v7.3 中的比例为 3.9%(24×106 个中的 <1×106 )。经过质量过滤和偏差校正后,ACOS GOSAT v9 与 TCCON 和模式之间的 XCO2 差异(1σ)为:海洋闪烁观测值约为百万分之 1,陆地观测值约为百万分之 1 至 1.5。TCCON 和模式的全球平均偏差小于约 0.2 ppm。与 v10 OCO-2 XCO2 产品相比,陆地观测的季节平均偏差约为 0.1 ppm。然而,对于海洋闪烁观测数据,相对于 OCO-2 的季节平均偏差在 0.2 到 0.6 ppm 之间,且随时间和纬度变化很大。

美国宇航局戈达德地球科学数据和信息服务中心(GES-DISC)提供了 ACOS GOSAT v9 XCO2 数据的每轨道完整格式(https://doi.org/10.5067/OSGTIL9OV0PN,OCO-2 科学小组等,2019b)和每日精简格式(https://doi.org/10.5067/VWSABTO7ZII4,OCO-2 科学小组等,2019a)。此外,还生成了一套新的月度超级精简文件,其中仅包含每次卫星观测的最基本变量,为入门级用户提供了一个轻量级卫星产品,供其进行初步探索(CaltechDATA,https://doi.org/10.22002/D1.2178,Eldering,2021)。v9 ACOS 数据用户指南》(DUG)介绍了 GOSAT 数据的最佳使用方法(O'Dell 等人,2020 年)。GOSAT v9 数据集对于研究跨越整整十年或更长时间的碳循环现象应该特别有用,并可作为 2014 年 9 月开始的较短的 OCO-2 v10 数据集的有益补充。

数据信息

Shortname:

ACOS_L2_Lite_FP

Longname:

ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3

Version:

7.3

Format:

netCDF

Spatial Coverage:

-180.0,-90.0,180.0,90.0

Temporal Coverage:

2009-04-21 to  2016-06-02

File Size:

50 MB per file

Data Resolution

Spatial:

10.5 km x 10.5 km

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ACOS_L2_Lite_FP",cloud_hosted=True,bounding_box=(-180, -90, 180, 90),temporal=("2009-04-20", "2020-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

OCO-2 Science Team/Michael Gunson, Annmarie Eldering (2016), ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], GES DISC

GES DISC 

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集——TANSO-FTS 运行前 11 年收集的测量数据中得出二氧化碳(CO2)干空气摩尔分数(XCO2)的估计值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922768

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5