AI大模型探索之路-应用篇15:GLM大模型-ChatGLM3-6B私有化本地部署

2024-04-18 09:12

本文主要是介绍AI大模型探索之路-应用篇15:GLM大模型-ChatGLM3-6B私有化本地部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、ChatGLM3-6B 简介说明

二、ChatGLM3-6B 资源评估

三、购买云服务器

四、git拉取GLM

五、pip安装依赖

六、运行测试

七、本地部署安装

总结


前言

ChatGLM3-6B 是 OpenAI 推出的一款强大的自然语言处理模型,它在前两代模型的基础上进行了优化和改进,具有更高的性能和更广泛的应用场景。本文将从技术角度对 ChatGLM3-6B 进行详细介绍,包括其特点、资源评估、购买云服务器、git拉取GLM、pip安装依赖、运行测试以及本地部署安装等方面的内容。希望通过本文的介绍,能够帮助大家更好地理解和使用 ChatGLM3-6B 模型。

一、ChatGLM3-6B 简介说明

ChatGLM3-6B 是一款基于深度学习的自然语言处理模型,它具有以下特点:

1)更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。

2)更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。

3)更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K

二、ChatGLM3-6B 资源评估

初步粗略估算:

1)如果精度为FP32, 需要GPU显存大概 24G左右,如果考虑其他因素再加一点32G左右。
2)如果精度为FP16, 需要GPU显存大概 12G左右,如果考虑其他因素再加一点16G左右。
3)如果量化为int8, 需要GPU显存大概 6G左右,如果考虑其他因素再加一点8G左右。

由于默认情况下,ChatGLM3-6B模型以 FP16 精度加载,因此大概需要16G左右;
如果显存不够需要修改源码进行量化处理,源码参考如下:
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
.quantize(8).cuda()

三、购买云服务器

在​​​​​​​AutoDL租一个按量收费的服务器;大家可自行选择合适的云平台,购买云服务器​​​​​​​

选择最新的Pytorch基础镜像(核心需要pytorch库)

登录云服务器

学术加速一波,执行命令:source /etc/network_turbo

四、git拉取GLM

1)下载GLM

git clone https://github.com/THUDM/ChatGLM3

2)下载完成后进入ChatGLM3目录

cd ChatGLM3

五、pip安装依赖

执行下面的pip命令,安装依赖(核心需要pytorch库)

pip install -r requirements.txt

安装过程中提示tensorboard依赖的protobuf版比较低,服务器中protobuf版本过高

有两种方案:

1)降低protobuf的版本到满足tensorboard 2.15.1的要求。你可以使用pip命令来卸载当前的protobuf并安装一个兼容的版本。例如:
pip uninstall protobuf
pip install protobuf==4.24
2)升级你的tensorboard版本到一个与当前protobuf版本兼容的版本。你需要查找最新的tensorboard版本,然后使用pip命令来安装。例如:
pip install --upgrade tensorboard

经尝试采用第一种失败后,改用方案二执行成功。

再重新执行:pip install -r requirements.txt,执行成功

六、运行测试

进入basic_demo目录,查看测试的demo

执行测试demo :   python cli_demo.py

这个目录放了各种测试用的demo,为了方便使用,本次主要采用命令行客户端的方式测试

第一次执行时,中途链接huggingface超时失败,惊出一身冷汗

第二次执行后执行成功(终于出现了期待已久的画面)

赶紧测一波 ,

测试效果赶紧很不错,精准度方面也比较高;另外,感受最明显的特点就是,“速度快”,

基本上在我提问完后,ChatGLM秒回结果,和调用OpenAI在线API相比,直接原地起飞。

七、本地部署安装

由于本地电脑GPU资源不足,无法实操;主要以云服务器部署为主;本地安装方式仅做记录备用

1. Python环境准备

建议安装anaconda(里面集成了很多科学计算的库集成了jupyter等在线编译工具)

网站会自动识别电脑版本匹配工具

2. GPU版PyTorch安装

PyTorch是一个开源的Python机器学习库,基于Torch;它提供了必要的模型管理和训练工具,以及分布式训练能力、易用性、以及与其他工具的良好集成;用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。

ChatGLM3-6B运行过程需要借助PyTorch来完成相关计算。

需要确认是否已经安装2.0版本及以上的GPU版本的PyTorch;

1)验证是否安装

#导入模块
import torch#查看Pytorch的版本
torch.__version__#测试当前的touch版本与当前服务器的CUDA是否兼容
print(torch.cuda.is_available())

2)安装

#卸载当前pytorch版本
pip uninstall torch torchvision torchaudio#安装新的pytorch版本
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

3. 验证PyTorch与CUDA是否兼容

CUDA是Compute Unified Device Architecture的缩写,它是由NVIDIA公司推出的一个并行计算平台和应用程序接口(API),允许软件开发者和软件工程师使用NVIDIA的图形处理单元(GPU)进行通用计算。简单来说,CUDA让开发者能够利用NVIDIA GPU强大的计算能力来加速除了图形处理以外的科学和工程计算,从而提供比传统CPU更高效的性能。

1)验证是否兼容

#导入模块
import torch#测试当前的touch版本与当前服务器的CUDA是否兼容
print(torch.cuda.is_available())

2)重新安装

在CUDA官网下载最新版CUDA toolkit(CUDA安装工具)进行安装或者更新至12.1版,

3)重新验证

4. 拉取ChatGLM3工程

创建一个目录使用GIT拉取工程代码

git clone https://github.com/THUDM/ChatGLM3cd ChatGLM3

下载完成后,能够在你的文件目录下看到完整的ChatGLM3安装文件

5. 安装ChatGLM3-6B项目依赖库

pip install -r requirements.txt

安装过程若出现类似typing-extensions或fastapi等非核心库不兼容性报错,并不会影响最终模型运行,不用进行额外处理。完成了相关依赖库的安装之后,即可尝试进行模型调用了。

6. 运行测试

测试方式1:

python cli_demo.py

测试方式2:

streamlit run web_demo2.py

总结

本文从技术角度对 ChatGLM3-6B 进行了深入介绍,包括其特点、资源评估、购买云服务器、git 拉取 GLM、pip 安装依赖、运行测试以及本地部署安装等方面的内容。希望通过本文的介绍,能够帮助大家更好地理解和使用 ChatGLM3-6B 模型。

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

这篇关于AI大模型探索之路-应用篇15:GLM大模型-ChatGLM3-6B私有化本地部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914356

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Maven如何手动安装依赖到本地仓库

《Maven如何手动安装依赖到本地仓库》:本文主要介绍Maven如何手动安装依赖到本地仓库问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载依赖二、安装 JAR 文件到本地仓库三、验证安装四、在项目中使用该依赖1、注意事项2、额外提示总结一、下载依赖登

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.