本文主要是介绍算法打卡day48|动态规划篇16| Leetcode 583. 两个字符串的删除操作、72. 编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
算法题
Leetcode 583. 两个字符串的删除操作
题目链接:583. 两个字符串的删除操作
大佬视频讲解:583. 两个字符串的删除操作视频讲解
个人思路
本题和115.不同的子序列相比,变为了两个字符串都可以删除,整体思路是不变的,依旧用动态规划解决,关键在于递推公式的推导
解法
动态规划
动规五部曲:
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
2.确定递推公式
分为以下两种情况
-
当word1[i - 1] 与 word2[j - 1]相同的时候
- 当word1[i - 1] 与 word2[j - 1]不相同的时候
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
最后是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1],那么在删 word1[i - 1],就达到两个元素都删除的效果,即 dp[i][j-1] + 1。
3.dp数组如何初始化
从递推公式中可以看出,dp[i][0] 和 dp[0][j]是一定要初始化的
dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,所以dp[i][0] = i。dp[0][j]的话同理
4.确定遍历顺序
从递推公式 可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
5.举例推导dp数组
以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:
class Solution {public int minDistance(String word1, String word2) {int[][] dp = new int[word1.length() + 1][word2.length() + 1];for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;//初始化dp数组for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;for (int i = 1; i < word1.length() + 1; i++) {for (int j = 1; j < word2.length() + 1; j++) {if (word1.charAt(i - 1) == word2.charAt(j - 1)) {//相同情况下dp[i][j] = dp[i - 1][j - 1];}else{//不同情况下,取最小dp[i][j] = Math.min(dp[i - 1][j - 1] + 2,Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));}}}return dp[word1.length()][word2.length()];}
}
时间复杂度:O(n*m);( n 和 m 分别为word1和 word2 的长度)
空间复杂度:O( n*m);(二维dp数组)
Leetcode 72. 编辑距离
题目链接:72. 编辑距离
大佬视频讲解:72. 编辑距离视频讲解
个人思路
感觉思路没有打开
解法
动态规划
编辑距离是用动规来解决的经典题目,用动规可以很巧妙的算出最少编辑距离。
动规五部曲:
1. 确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
2. 确定递推公式
在整个动规的过程中,最为关键就是正确理解dp[i][j]
的定义!在确定递推公式的时候,首先要考虑清楚编辑的几种操作,也就是如下的4种情况:
if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换
if (word1[i - 1] == word2[j - 1])
那么说明不用任何编辑,dp[i][j]
就应该是 dp[i - 1][j - 1]
,即dp[i][j] = dp[i - 1][j - 1];
if (word1[i - 1] != word2[j - 1])
,此时就需要编辑
操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i - 1][j] + 1;
操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i][j - 1] + 1;
其中word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"
,word1
删除元素'd'
和 word2
添加一个元素'd'
,变成word1="a", word2="ad"
, 最终的操作数是一样! dp数组如下图所示意的:
a a d+-----+-----+ +-----+-----+-----+| 0 | 1 | | 0 | 1 | 2 |+-----+-----+ ===> +-----+-----+-----+a | 1 | 0 | a | 1 | 0 | 1 |+-----+-----+ +-----+-----+-----+d | 2 | 1 |+-----+-----+
操作三:替换元素,word1
替换word1[i - 1]
,使其与word2[j - 1]
相同,此时不用增删加元素。
当if (word1[i - 1] == word2[j - 1])
的时候,操作 是 dp[i][j] = dp[i - 1][j - 1]
那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。
所以 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1])
时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
3. dp数组如何初始化
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
同理dp[0][j] = j;
4. 确定遍历顺序
从如下四个递推公式:
dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
所以在dp矩阵中一定是从左到右从上到下去遍历。
5. 举例推导dp数组
以示例1为例,输入:word1 = "horse", word2 = "ros"
为例,dp矩阵状态图如下:
class Solution {public int minDistance(String word1, String word2) {int m = word1.length();int n = word2.length();int[][] dp = new int[m + 1][n + 1];for (int i = 1; i <= m; i++) {dp[i][0] = i;}// 初始化for (int j = 1; j <= n; j++) { dp[0][j] = j;}for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {// 因为dp数组有效位从1开始// 所以当前遍历到的字符串的位置为i-1 | j-1if (word1.charAt(i - 1) == word2.charAt(j - 1)) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;}}}return dp[m][n];}
}
时间复杂度:O(n*m);( n 和 m 分别为word1 和 word2 的长度)
空间复杂度:O( n*m);(二维dp数组)
以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网
这篇关于算法打卡day48|动态规划篇16| Leetcode 583. 两个字符串的删除操作、72. 编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!