算法打卡day48|动态规划篇16| Leetcode 583. 两个字符串的删除操作、72. 编辑距离

本文主要是介绍算法打卡day48|动态规划篇16| Leetcode 583. 两个字符串的删除操作、72. 编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 算法题

Leetcode 583. 两个字符串的删除操作

题目链接:583. 两个字符串的删除操作

大佬视频讲解:583. 两个字符串的删除操作视频讲解

 个人思路 

本题和115.不同的子序列相比,变为了两个字符串都可以删除,整体思路是不变的,依旧用动态规划解决,关键在于递推公式的推导

解法
动态规划

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数

2.确定递推公式

分为以下两种情况

  1. 当word1[i - 1] 与 word2[j - 1]相同的时候

  2. 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

最后是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1],那么在删 word1[i - 1],就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

3.dp数组如何初始化

从递推公式中可以看出,dp[i][0] 和 dp[0][j]是一定要初始化的

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,所以dp[i][0] = i。dp[0][j]的话同理

4.确定遍历顺序

从递推公式 可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

5.举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

class Solution {public int minDistance(String word1, String word2) {int[][] dp = new int[word1.length() + 1][word2.length() + 1];for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;//初始化dp数组for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;for (int i = 1; i < word1.length() + 1; i++) {for (int j = 1; j < word2.length() + 1; j++) {if (word1.charAt(i - 1) == word2.charAt(j - 1)) {//相同情况下dp[i][j] = dp[i - 1][j - 1];}else{//不同情况下,取最小dp[i][j] = Math.min(dp[i - 1][j - 1] + 2,Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));}}}return dp[word1.length()][word2.length()];}
}

时间复杂度:O(n*m);( n 和 m 分别为word1和 word2 的长度)

空间复杂度:O( n*m);(二维dp数组)


 Leetcode  72. 编辑距离

题目链接:72. 编辑距离

大佬视频讲解:72. 编辑距离视频讲解

个人思路

感觉思路没有打开

解法
动态规划

编辑距离是用动规来解决的经典题目,用动规可以很巧妙的算出最少编辑距离。

动规五部曲:

1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

2. 确定递推公式

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!在确定递推公式的时候,首先要考虑清楚编辑的几种操作,也就是如下的4种情况:

if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

if (word1[i - 1] != word2[j - 1]),此时就需要编辑

操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

 dp[i][j] = dp[i - 1][j] + 1;

操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

 dp[i][j] = dp[i][j - 1] + 1;

其中word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd' 和 word2添加一个元素'd',变成word1="a", word2="ad"最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d+-----+-----+             +-----+-----+-----+|  0  |  1  |             |  0  |  1  |  2  |+-----+-----+   ===>      +-----+-----+-----+a |  1  |  0  |           a |  1  |  0  |  1  |+-----+-----+             +-----+-----+-----+d |  2  |  1  |+-----+-----+

操作三:替换元素word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

if (word1[i - 1] == word2[j - 1])的时候,操作 是 dp[i][j] = dp[i - 1][j - 1] 

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

3. dp数组如何初始化

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

4. 确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

所以在dp矩阵中一定是从左到右从上到下去遍历。

5. 举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

class Solution {public int minDistance(String word1, String word2) {int m = word1.length();int n = word2.length();int[][] dp = new int[m + 1][n + 1];for (int i = 1; i <= m; i++) {dp[i][0] =  i;}// 初始化for (int j = 1; j <= n; j++) { dp[0][j] = j;}for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {// 因为dp数组有效位从1开始// 所以当前遍历到的字符串的位置为i-1 | j-1if (word1.charAt(i - 1) == word2.charAt(j - 1)) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;}}}return dp[m][n];}
}

时间复杂度:O(n*m);( n 和 m 分别为word1 和 word2 的长度)

空间复杂度:O( n*m);(二维dp数组)


 以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网

这篇关于算法打卡day48|动态规划篇16| Leetcode 583. 两个字符串的删除操作、72. 编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913497

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO