VS编译部署libtorch-yolov5推理运行自己训练的权重文件/模型

2024-04-17 18:12

本文主要是介绍VS编译部署libtorch-yolov5推理运行自己训练的权重文件/模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

libtorch-yolov5推理运行

  • 一、模型文件导出
  • 二、项目创建
    • 2.1、测试代码下载
    • 2.2、文件拷贝
    • 2.3、代码优化修改
    • 2.4、其它准备工作
  • 三、代码运行
    • 3.1、参数修改
    • 3.2、修改完毕点击运行

前期环境配置(vs+libtorch+opencv)可以参考博主另一篇博文vs配置opencv和libtorch(2.2.2)(cuda12.0),这里主要基于环境配置好之后如何运行yolov5的推理程序,并生成对应的.exe文件。

博主环境软件版本:

  • win10
  • pytorch 2.2.2
  • libtorch 2.2.2
  • opencv4.8.0
  • -cuda12.0

libtroch版本尽量和pytorch的版本一致,各版本libtorch下载地址。1.10.1版本该连接的博文中没有给出,可以直接修改后面的版本号,例如CPU-Release版本的地址为:

https://download.pytorch.org/libtorch/cpu/libtorch-win-shared-with-deps-1.10.1%2Bcpu.zip

博主查阅了很多博文,有的博文是通过cmake编译运行,博主vs新手,因为VS配置的libtorch和opencv是跟着项目的(在vs界面),博主暂时还没能把终端cmake编译和vs联系起来(配置好的环境容易崩掉),后边有时间再出一版结合cmake编译运行的方案。
所以这篇文章主要就是在vs端直接编译运行libtorch-yolov5程序,并生成对应的.exe文件。

一、模型文件导出

如果已经导出了GPU模型的朋友可以跳过这一步。
这一步是准备后续工作推理需要的模型文件,训练得到的.pt文件不能直接使用,需要转换为torchscript, onnx, coreml, saved_model, pb, tflite, tfjs等格式,博主以torchscript为例。

打开export.py,修改参数【‘–data’】数据集的.yaml文件为自己对应的.yaml文件地址,博主是CCPD.yamll;修改参数【‘–weights’】为自己训练好的权重文件地址,博主是runs/train/exp5/weights/best.pt(最后导出的模型文件也在此目录下);参数【‘–include’】,default参数修改为torchscript
除了直接修改参数,也可以在终端运行命令行:

python export.py --data data/CCPDMASK.yaml --weights runs/train/exp5/weights/best --include torchscript
.pt

在这里插入图片描述

如下图所示,成功导出。
在这里插入图片描述
可以在相应的目录下看到该文件:

在这里插入图片描述

注意这里的导出参数【‘–imgsz’】和训练时的【‘–imgsz’】需保持一致,同理后续推理时的【‘–imgsz’】也保持一致。

export.py更多参数含义有兴趣的可以单独搜索下,这里不做赘述。

二、项目创建

接博文vs配置opencv和libtorch(2.2.2)(cuda12.0),环境已配置完毕,接下来就是项目创建。

2.1、测试代码下载

下载地址:libtorch-yolov5官方源码下载。
这个项目是将yolov5训练好的模型用于推理,并生成.exe文件以及lib文件,用以后续部署的。

  • PyInstaller通过spec也可以打包模型恩建,方便不会使用Python脚本的研究人员使用,但不适用于工作中实际任务的深度学习模型部署(速度较低且占用空间)。

下载解压后如图所示:

在这里插入图片描述

2.2、文件拷贝

接博文vs配置opencv和libtorch(2.2.2)(cuda12.0)创建的项目Project3,分别在头文件和源文件里边创建【2.1】下载的libtorch-yolov5源码里的各个文件。
这给出两种方法:

  • 方法1:将源码中【src】和【include】目录里边的文件拷贝到D:\VCworkspace\Project3\Project3目录下,这个目录即为博主最开始创建的twst.cpp所在的文件目录;在右键【源文件】→【添加】→【现有项】,选择上一步拷贝的.cpp进行添加;头文件同理;添加完成后就可以在VS项目下看到对应的文件啦。(如果只是复制,VS好像并不能直接同步过来)
  • 方法2:分别点击头文件源文件并新建同名头文件,源文件后,将相应的代码拷贝过来。(如果要修改名字,注意引用时也应该修改,新手的话建议暂时不改)

创建完成后如图所示:
在这里插入图片描述

2.3、代码优化修改

这一步如果是运行训练时imgsz为640`且不会更改的模型文件,那可以跳过这不。但后续若更改训练尺寸大小的话,可以优化下源码。

在源码Run()函数中增加一个函数输入,目的是调整推理时,输入网络的图片尺寸大小;在main()函数中增加两个输入,“label”“imgsz”,别是标签文件所在的路径和输入网络的尺寸大小。

对应修改如下:

【detector.h】
在这里插入图片描述
【detector.cpp】

在这里插入图片描述
【main.cpp】
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

demo()函数中可增加一句代码,保存推理后的图片,地址给测试图片的路径地址。

2.4、其它准备工作

为了测试方便,博主新建一个文件用于存放测试相关的文件yolov5
将【一】中导出的模型文件拷贝到该目录下;测试图片bus.jpg也放置在此目录下;新建一个.names文件。
.names文件创建方法:
1) 文件夹里右键新建一个文本文件ccpdmask,打开后编辑训练的数据集的类别;

在这里插入图片描述

这里的类别名字同训练时的.yaml文件:
在这里插入图片描述

2)点击【查看】,勾选【文件扩展名】,将文本文件的后缀名.txt改为.names。如下图所示:
在这里插入图片描述

三、代码运行

3.1、参数修改

将箭头所示参数分别修改为【2.4】中对应文件的地址:
在这里插入图片描述
这里给生成推理结果图片的地址
在这里插入图片描述

3.2、修改完毕点击运行

在这里插入图片描述

成功运行。
在【3.1】给出的路径下也有推理结果的图片生成。
在这里插入图片描述

终于拿下啦。
大家有什么问题欢迎私信博主!

这篇关于VS编译部署libtorch-yolov5推理运行自己训练的权重文件/模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/912476

相关文章

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom