Day42:动态规划 LeedCode 01背包 416. 分割等和子集

2024-04-17 01:12

本文主要是介绍Day42:动态规划 LeedCode 01背包 416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01背包

1.确定dp数组以及下标的含义

dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j]

2.确定递推公式

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值,所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3.初始化

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

4.确定遍历顺序

由递推公式dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);dp[i][j] 是由左上方数值推导出来

先遍历 物品还是先遍历背包重量呢?

其实都可以!!


46. 携带研究材料

时间限制:5.000S  空间限制:128MB

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

输入示例
6 1
2 2 3 1 5 2
2 3 1 5 4 3
输出示例
5
提示信息

小明能够携带 6 种研究材料,但是行李空间只有 1,而占用空间为 1 的研究材料价值为 5,所以最终答案输出 5。 

数据范围:
1 <= N <= 5000
1 <= M <= 5000
研究材料占用空间和价值都小于等于 1000

代码参考:

import java.util.*;
public class Main{public static void main(String[] args ){Scanner scanner=new Scanner(System.in);int m=scanner.nextInt();int n=scanner.nextInt();int[][] t=new int[2][m];for(int i=0;i<2;i++){for(int j=0;j<m;j++){t[i][j]=scanner.nextInt();}}int[][]dp=new int[m][n+1];//初始化for(int j=0;j<=n;j++){if(t[0][0]<=j){dp[0][j]=t[1][0];}}for(int i=1;i<m;i++){for(int j=1;j<=n;j++){if(j<t[0][i]) dp[i][j]=dp[i-1][j];else  dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-t[0][i]]+t[1][i]);}}System.out.println(dp[m-1][n]);}
}

 优化上面代码,把二维的dp[][]数组该为一维

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

dp数组的第i层只与第i-1层有关

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了

该为一维dp数组后,根据地推公式可得,dp[i]都是由其左边的数得到的,所以遍历顺序应该改为从右往左,这样才能让dp[j]利用到上一层的dp[j]

import java.util.*;
public class Main{public static void main(String[] args ){Scanner scanner=new Scanner(System.in);int m=scanner.nextInt();int n=scanner.nextInt();int[][] t=new int[2][m];for(int i=0;i<2;i++){for(int j=0;j<m;j++){t[i][j]=scanner.nextInt();}}int[]dp=new int[n+1];//初始化for(int j=0;j<=n;j++){if(t[0][0]<=j){dp[j]=t[1][0];}}for(int i=1;i<m;i++)for(int j=n;j>=0;j--){if(j>=t[0][i])dp[j]=Math.max(dp[j],dp[j-t[0][i]]+t[1][i]);}System.out.println(dp[n]);}
}

dp数组初始化可以统一为0,物品从0开始 开始遍历

import java.util.*;
public class Main{public static void main(String[] args ){Scanner scanner=new Scanner(System.in);int m=scanner.nextInt();int n=scanner.nextInt();int[][] t=new int[2][m];for(int i=0;i<2;i++){for(int j=0;j<m;j++){t[i][j]=scanner.nextInt();}}int[]dp=new int[n+1];//初始化dp[]都为0for(int i=0;i<m;i++)for(int j=n;j>=0;j--){if(j>=t[0][i])dp[j]=Math.max(dp[j],dp[j-t[0][i]]+t[1][i]);}System.out.println(dp[n]);}
}

 


416. 分割等和子集

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

思路:

用01背包问题解决该题,01背包要求一个物品最多取一次,跟这里的求子集的步骤一致,本题要求集合里能否出现总和为 sum / 2 的子集,即在01背包问题中的求价值为sum/2

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

动规五部曲分析如下:

1.确定dp数组以及下标的含义

dp[i]表示背包容量为i时的最大价值

本题中每一个元素的数值既是重量,也是价值。

所以 当 dp[target] == target 的时候,背包就装满了。

2.确定递推公式

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

3.dp数组如何初始化

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

4.确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

5.举例推导dp数组

class Solution {public boolean canPartition(int[] nums) {int sum=0;for(int i=0;i<nums.length;i++){sum+=nums[i];}if(sum%2==1) return false;int[] dp=new int[sum/2+1];for(int j=0;j<nums.length;j++)for(int i=sum/2;i>=nums[j];i--){dp[i]=Math.max(dp[i],dp[i-nums[j]]+nums[j]);}if(dp[sum/2]== sum/2)return true;return false;}
}

 

 

 


 

这篇关于Day42:动态规划 LeedCode 01背包 416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910412

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用