CNN中难点分析--对卷积层(Convolution)与池化层(Pooling)的理解

2024-04-16 17:08

本文主要是介绍CNN中难点分析--对卷积层(Convolution)与池化层(Pooling)的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
传统机器学习通过特征工程提取特征,作为Input参数进行输入,从而拟合一个相对合适的w参数,而CNN利用卷积层感知局部特征,然后更高层次对局部进行综合操作,从而得到全局信息,池化层层提取主要特征,从而自动提取特征。

1、池化层的理解

pooling池化的作用则体现在降采样:保留显著特征、降低特征维度,增大kernel的感受野。另外一点值得注意:pooling也可以提供一些旋转不变性。

池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避免过拟合的出现;一方面进行特征压缩,提取主要特征。
  最大池采样在计算机视觉中的价值体现在两个方面:(1)、它减小了来自上层隐藏层的计算复杂度;(2)、这些池化单元具有平移不变性,即使图像有小的位移,提取到的特征依然会保持不变。由于增强了对位移的鲁棒性,这样可以忽略目标的倾斜、旋转之类的相对位置的变化,以此提高精度,最大池采样方法是一个高效的降低数据维度的采样方法。
  需要注意的是:这里的pooling操作是特征图缩小,有可能影响网络的准确度,因此可以通过增加特征图的深度来弥补(这里的深度变为原来的2倍)。

在CNN网络中卷积池之后会跟上一个池化层,池化层的作用是提取局部均值与最大值,根据计算出来的值不一样就分为均值池化层与最大值池化层,一般常见的多为最大值池化层。池化的时候同样需要提供filter的大小、步长。

tf.nn.max_pool(value, ksize, strides, padding, name=None)

参数是四个,和卷积很类似:

第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]

第四个参数padding:和卷积类似,可以取’VALID’ 或者’SAME’

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式

举例:池化输出特征图计算和卷积计算公式相同,区别是池化是求卷积区域中的max,不涉及卷积计算。

1)pooling(kernel size 2×2,padding 0,stride 232*32*16->pooling之后(32-2+0/2 + 1 =16*16pool3 = tf.nn.max_pool(layer3,[1,2,2,1],[1,2,2,1],padding='SAME')    // p = (f-1)/2=(2-1)/2=0,,所以padding='SAME'或“VALID”输出一样2)pooling(kernel size 3×3,padding 0,stride 132*32*16->pooling之后(32-3+0/1 + 1 = 30*30pool3 = tf.nn.max_pool(layer3,[1,3,3,1],[1,1,1,1])   

2、padding的理解

之前在讨论卷积神经网络的时候,我们是使用filter来做元素乘法运算来完成卷积运算的。目的是为了完成探测垂直边缘这种特征。但这样做会带来两个问题。

卷积运算后,输出图片尺寸缩小;
越是边缘的像素点,对于输出的影响越小,因为卷积运算在移动的时候到边缘就结束了。中间的像素点有可能会参与多次计算,但是边缘像素点可能只参与一次。所以我们的结果可能会丢失边缘信息。
  那么为了解决这个问题,我们引入padding, 什么是padding呢,就是我们认为的扩充图片, 在图片外围补充一些像素点,把这些像素点初始化为0.

padding的用途:

(1)保持边界信息,如果没有加padding的话,输入图片最边缘的像素点信息只会被卷积核操作一次,但是图像中间的像素点会被扫描到很多遍,那么就会在一定程度上降低边界信息的参考程度,但是在加入padding之后,在实际处理过程中就会从新的边界进行操作,就从一定程度上解决了这个问题。

(2)可以利用padding对输入尺寸有差异图片进行补齐,使得输入图片尺寸一致。

(3)卷积神经网络的卷积层加入Padding,可以使得卷积层的输入维度和输出维度一致。

(4)卷积神经网络的池化层加入Padding,一般都是保持边界信息和

padding模式:SAME和VALID

SAME:是填充,填充大小, p = (f-1)/2;VALID:是不填充,直接计算输出。

这篇关于CNN中难点分析--对卷积层(Convolution)与池化层(Pooling)的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/909394

相关文章

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin