【MATLAB源码-第51期】基于matlab的粒子群算法(PSO)的栅格地图路径规划。

2024-04-16 07:44

本文主要是介绍【MATLAB源码-第51期】基于matlab的粒子群算法(PSO)的栅格地图路径规划。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

操作环境:

MATLAB 2022a

1、算法描述

粒子群算法(Particle Swarm Optimization,简称PSO)是一种模拟鸟群觅食行为的启发式优化方法。以下是其详细描述:

基本思想:
鸟群在寻找食物时,每只鸟都会观察自己和其他鸟之间的距离,以及当前找到的食物的位置。每只鸟都会向自己历史上找到的最好食物位置和整个群体找到的最好食物位置飞翔。通过这种方式,鸟群可以在一定范围内快速找到食物。

算法流程:
1. 初始化:随机生成一个粒子群,每个粒子表示在解空间中的一个潜在解。
2. 评估:为每个粒子设定一个初始位置和速度,并计算它的适应度值。
3. 更新速度和位置:
    - 对每个粒子,根据以下公式更新其速度:
    
        其中:
        -  是粒子i的速度。
        -  是惯性权重。
        -  是学习因子。
        -  是随机数。
        -  是粒子i的个人最佳位置。
        -  是全局最佳位置。
        -  是粒子i的当前位置。
    - 更新粒子位置:
4. 更新pbest和gbest:如果一个粒子在新位置得到更好的适应度值,更新其pbest。同样,如果群体中的任何粒子在新位置得到了更好的适应度值,更新gbest。
5. 终止条件:当满足特定的终止条件(如迭代次数或适应度达到预定阈值)时,算法结束,并返回gbest作为最佳解。

应用:
PSO被广泛应用于许多优化问题,如函数优化、神经网络训练和组合优化问题。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第51期】基于matlab的粒子群算法(PSO)的栅格地图路径规划。-CSDN博客文章浏览阅读383次。鸟群在寻找食物时,每只鸟都会观察自己和其他鸟之间的距离,以及当前找到的食物的位置。4. 更新pbest和gbest:如果一个粒子在新位置得到更好的适应度值,更新其pbest。- 更新粒子位置:\( x_{i} = x_{i} + v_{i} \)- \( pbest_{i} \) 是粒子i的个人最佳位置。- \( c_{1}, c_{2} \) 是学习因子。- \( r_{1}, r_{2} \) 是随机数。- \( x_{i} \) 是粒子i的当前位置。- \( v_{i} \) 是粒子i的速度。https://blog.csdn.net/Koukesuki/article/details/133927883?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171314257116777224420474%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=171314257116777224420474&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-133927883-null-null.nonecase&utm_term=51%E6%9C%9F&spm=1018.2226.3001.4450

这篇关于【MATLAB源码-第51期】基于matlab的粒子群算法(PSO)的栅格地图路径规划。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908190

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO