Python leetcode 1765 地图中的最高点,力扣练习,多源BFS解法代码实践,广度优先搜索,图搜索经典题目

本文主要是介绍Python leetcode 1765 地图中的最高点,力扣练习,多源BFS解法代码实践,广度优先搜索,图搜索经典题目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

leetcode 1765 地图中的最高点,多源BFS

1.题目描述

给你一个大小为 m x n 的整数矩阵 isWater ,它代表了一个由 陆地 和 水域 单元格组成的地图。

  • 如果 isWater[i][j] == 0 ,格子 (i, j) 是一个 陆地 格子。
  • 如果 isWater[i][j] == 1 ,格子 (i, j) 是一个 水域 格子。

你需要按照如下规则给每个单元格安排高度:

  • 每个格子的高度都必须是非负的。
  • 如果一个格子是 水域 ,那么它的高度必须为 0 。
  • 任意相邻的格子高度差 至多 为 1 。当两个格子在正东、南、西、北方向上相互紧挨着,就称它们为相邻的格子。(也就是说它们有一条公共边)

找到一种安排高度的方案,使得矩阵中的最高高度值 最大 。

请你返回一个大小为 m x n 的整数矩阵 height ,其中 height[i][j] 是格子 (i, j) 的高度。如果有多种解法,请返回 任意一个 。

示例 1:

输入:isWater = [[0,1],[0,0]]
输出:[[1,0],[2,1]]
解释:上图展示了给各个格子安排的高度。
蓝色格子是水域格,绿色格子是陆地格。

示例 2:

输入:isWater = [[0,0,1],[1,0,0],[0,0,0]]
输出:[[1,1,0],[0,1,1],[1,2,2]]
解释:所有安排方案中,最高可行高度为 2 。
任意安排方案中,只要最高高度为 2 且符合上述规则的,都为可行方案。

提示:

  • m == isWater.length
  • n == isWater[i].length
  • 1 <= m, n <= 1000
  • isWater[i][j] 要么是 0 ,要么是 1 。
  • 至少有 1 个水域格子。 

2.题目解析与代码 

 利用队列进行操作:

首先创建一个矩阵res用于写入结果,利用已知条件填入水域高度,未填入的陆地高度统一用-1表示,与已经写入的陆地区域相互区别;

其次,创建一个队列,所有水域入队;

然后,每个水域出队,写入res周围陆地高度,被写入高度的陆地作为源点继续入队;

知道循环结束,结束标志:不再有新的源点入队,即队列空了。

(注意队列的入队和出队一定不能在一个方向,右进左出,或者反过来)

代码:

class Solution:def highestPeak(self, isWater: List[List[int]]) -> List[List[int]]:m, n = len(isWater), len(isWater[0])res = [[0] * n for _ in range(m)]d = deque()for i in range(m):for j in range(n):if isWater[i][j]:d.append((i, j))res[i][j] = 0 if isWater[i][j] else -1dirs = [(1, 0), (-1, 0), (0, 1), (0, -1)]h = 1while d:size = len(d)for _ in range(size):x, y = d.popleft()for dir in dirs:nx, ny = x + dir[0], y + dir[1]if 0 <= nx < m and 0 <= ny < n and res[nx][ny] == -1:res[nx][ny] = hd.append((nx, ny))h += 1return res

  • 时间复杂度:O(m∗n)
  • 空间复杂度:O(m∗n)

这篇关于Python leetcode 1765 地图中的最高点,力扣练习,多源BFS解法代码实践,广度优先搜索,图搜索经典题目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907647

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1254(嵌套bfs,两次bfs)

/*第一次做这种题感觉很有压力,思路还是有点混乱,总是wa,改了好多次才ac的思路:把箱子的移动当做第一层bfs,队列节点要用到当前箱子坐标(x,y),走的次数step,当前人的weizhi(man_x,man_y),要判断人能否将箱子推到某点时要嵌套第二层bfs(人的移动);代码如下:

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

hdu1180(广搜+优先队列)

此题要求最少到达目标点T的最短时间,所以我选择了广度优先搜索,并且要用到优先队列。 另外此题注意点较多,比如说可以在某个点停留,我wa了好多两次,就是因为忽略了这一点,然后参考了大神的思想,然后经过反复修改才AC的 这是我的代码 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal