代码随想录算法训练营第四十一天| LeetCode 343. 整数拆分、96.不同的二叉搜索树

本文主要是介绍代码随想录算法训练营第四十一天| LeetCode 343. 整数拆分、96.不同的二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LeetCode 343. 整数拆分

题目链接/文章讲解/视频讲解:https://programmercarl.com/0343.%E6%95%B4%E6%95%B0%E6%8B%86%E5%88%86.html

状态:已解决

1.思路 

        题目的要求是要我们拆除某个给定的整数,让其拆分后的数相乘结果最大。因此我们知道此题分两步,第一步是拆分,第二步是求乘积最大值。对于拆分,究竟是拆成两个数还是三个数还是四个数呢?弄清楚这点非常关键。

        举个例子,对于9,我们是拆成3,3,3最大,这么一看,我们是要拆成三个数,而对于更大的数说不定还要拆成四五个数,好像很麻烦;然而,我们可以先不直接去拆9,而是从1开始拆起,当拆到6时,我们知道3*3=9是最大的,那么在这个前提下我们拆到9时,就不用拆成三个数,而是拆成3和6了,因为我们已知了6是还可以再拆的,并且6的拆分最大结果是9,那么拆成3和6的情况,其值其实为27而不是18

        由这个例子得到启发:拆数必须从小到大拆上来的,每次只需要拆成两个数,那么拆分结果就是前面保存的这两个数的拆分结果的最好值的相乘值(也就是说,这两个较小数前面已经被拆过了,我们只需要用它前面的拆分结果就行,不需要再去拆分了)!

(1)确定dp数组以及下标含义:

        经过前面的分析,我们知道关键信息其实就是每个数的最好拆分结果,那么我们只需要用一个一维数组来保存它们就行了。

        dp[i]:拆分数字i,得到的最大乘积为dp[i]。

(2)递推公式:

        这一步其实就为刚刚思路的第二步,确定乘积最大值。要解决这个问题,就需要清楚乘积由哪几种情况产生。由于要从小到大得到到n的每个数的最好拆分结果,那么我们就需要一个外层循环i来遍历从1到n的每个数,内层循环j来对i进行拆分,拆成j和i-j。那么乘积的由来:

① j * (i - j) 直接相乘

② j * dp[i - j]

即,一个是原生拆两个数(确实拆成了两个数),另一个是表面拆两个数,实际是根据了两个数前面的拆分情况将i拆成了若干数(大于等于3)。

这里有个小细节是第二种拆法只拆了 i -j ,没有拆j。因为如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

(3)dp的初始化:

        dp[2]初始化为1,这个很显而易见,但是dp[0]和dp[1]需要初始化吗?严格按照dp数组的定义来说是不需要的,因为0和1是不可拆分的,写上为了统一也无所谓。

(4)确定遍历顺序:

        前面的分析已经说了,这道题是需要从小到大先n之内的数的最后拆分结果都求出来的,故遍历顺序肯定是从前往后。

(5)举例推导dp数组:

        以 n=10 为例:

2.代码实现 

class Solution {
public:int integerBreak(int n) {vector<int> dp(n+1,0);dp[0]=1,dp[1]=1,dp[2]=1;for(int i=2;i<=n;i++){for(int j=1;j<=i/2;j++){//注意遍历到一半,超过这个值后面就是跟前面对称的了dp[i] = max(dp[i],max(j*dp[i-j],j*(i-j)));}}//打印结果// for(int i=1;i<=n;i++){//     cout<<dp[i]<<" ";// }return dp[n];}
};

时间复杂度:O(n^2)

空间复杂度:O(n)

二、96.不同的二叉搜索树 

题目链接/文章讲解/视频讲解:http://​ 题目链接/文章讲解/视频讲解:https://programmercarl.com/0343.%E6%95%B4%E6%95%B0%E6%8B%86%E5%88%86.html 状态:已解决 ​

状态:已解决

1.思路

        首先,我们需要清楚一个二叉树的构成:左子树、中间结点、右子树中间节点的左子树和右子树也都是一棵二叉树,意味着二叉树可以再分。这个结构是不是似曾相识!!我们知道动规问题也是可再分的:一个问题可以分解成若干的子问题,这也意味着一个问题实则由若干个子问题组成,跟二叉树由若干个左右二叉树组成的结构一样!因此,我们就可以类比地知道左右子树就是一个子问题,也就是说,我们要求一棵完整二叉树的构成,就是要在左右两棵子树的构成上,将二者再次合成一个二叉树,那么,一个完整二叉树的形态数就等于所有的左子树形态数*右子树形态数之和

        那么怎么分左子树和右子树呢?因为这里构造二叉树是根据二叉树的节点数来的,那么意味着左子树形态集合的不同就代表构成它们的节点数不同(n=3和n=5构造的左子树形态集合不同),因此,我们只需要控制每次构造左子树的节点数不同(右子树节点数也对应不同),就能得到n个节点所有可能的左子树形态集合。那么要怎样控制每次构成左子树的节点数不同呢?很简单,n个节点从左到右依次作为中间结点即可。

        根据上述分析,得到动规五部曲:

(1)确定dp数组以及下标的含义:

        因为我们只需要每个节点数对应的二叉树的形态数,故用一个一维数组保存信息就够了,dp[i]: i个节点构造的二叉树形态数为dp[i]。

(2)确定递推公式:

        外层循环i代表以 i 为总结点数的二叉树,内层循环 j 代表在i个节点中,选取 j 作为中间结点。然后我们统计以 i 为总结点数的二叉树的总形态。

        根据上面的分析,我们知道一个完整二叉树的形态数就等于所有的左子树形态数*右子树形态数之和。故dp[i] += dp[j - 1] * dp[i - j];

(3)初始化dp数组:

        初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。那么dp[0]应该是多少呢?从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。所以初始化dp[0] = 1。

(4)确定遍历顺序:

        因为要求以n为总节点数的二叉树的总形态数,需累计各种左子树形态数*右子树形态数的和,也就是需要先知道以(i - j) 为节点总数的左子树的形态数和以(j - i)为节点总数的右子树的形态数,故要先知道n前面的节点数的总形态数,故应该从前往后遍历。

(5)举例推导dp数组:

        以n=5为例:

2.代码实现 

class Solution {
public:int numTrees(int n) {vector<int> dp(n+1);dp[0]=1;for(int i=1;i<=n;i++){for(int j=1;j<=i;j++){dp[i] += dp[j-1]*dp[i-j];}}return dp[n];}
};

时间复杂度:O(n^2)

空间复杂度:O(n)

这篇关于代码随想录算法训练营第四十一天| LeetCode 343. 整数拆分、96.不同的二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906830

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例