代码随想录算法训练营第四十一天| LeetCode 343. 整数拆分、96.不同的二叉搜索树

本文主要是介绍代码随想录算法训练营第四十一天| LeetCode 343. 整数拆分、96.不同的二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LeetCode 343. 整数拆分

题目链接/文章讲解/视频讲解:https://programmercarl.com/0343.%E6%95%B4%E6%95%B0%E6%8B%86%E5%88%86.html

状态:已解决

1.思路 

        题目的要求是要我们拆除某个给定的整数,让其拆分后的数相乘结果最大。因此我们知道此题分两步,第一步是拆分,第二步是求乘积最大值。对于拆分,究竟是拆成两个数还是三个数还是四个数呢?弄清楚这点非常关键。

        举个例子,对于9,我们是拆成3,3,3最大,这么一看,我们是要拆成三个数,而对于更大的数说不定还要拆成四五个数,好像很麻烦;然而,我们可以先不直接去拆9,而是从1开始拆起,当拆到6时,我们知道3*3=9是最大的,那么在这个前提下我们拆到9时,就不用拆成三个数,而是拆成3和6了,因为我们已知了6是还可以再拆的,并且6的拆分最大结果是9,那么拆成3和6的情况,其值其实为27而不是18

        由这个例子得到启发:拆数必须从小到大拆上来的,每次只需要拆成两个数,那么拆分结果就是前面保存的这两个数的拆分结果的最好值的相乘值(也就是说,这两个较小数前面已经被拆过了,我们只需要用它前面的拆分结果就行,不需要再去拆分了)!

(1)确定dp数组以及下标含义:

        经过前面的分析,我们知道关键信息其实就是每个数的最好拆分结果,那么我们只需要用一个一维数组来保存它们就行了。

        dp[i]:拆分数字i,得到的最大乘积为dp[i]。

(2)递推公式:

        这一步其实就为刚刚思路的第二步,确定乘积最大值。要解决这个问题,就需要清楚乘积由哪几种情况产生。由于要从小到大得到到n的每个数的最好拆分结果,那么我们就需要一个外层循环i来遍历从1到n的每个数,内层循环j来对i进行拆分,拆成j和i-j。那么乘积的由来:

① j * (i - j) 直接相乘

② j * dp[i - j]

即,一个是原生拆两个数(确实拆成了两个数),另一个是表面拆两个数,实际是根据了两个数前面的拆分情况将i拆成了若干数(大于等于3)。

这里有个小细节是第二种拆法只拆了 i -j ,没有拆j。因为如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

(3)dp的初始化:

        dp[2]初始化为1,这个很显而易见,但是dp[0]和dp[1]需要初始化吗?严格按照dp数组的定义来说是不需要的,因为0和1是不可拆分的,写上为了统一也无所谓。

(4)确定遍历顺序:

        前面的分析已经说了,这道题是需要从小到大先n之内的数的最后拆分结果都求出来的,故遍历顺序肯定是从前往后。

(5)举例推导dp数组:

        以 n=10 为例:

2.代码实现 

class Solution {
public:int integerBreak(int n) {vector<int> dp(n+1,0);dp[0]=1,dp[1]=1,dp[2]=1;for(int i=2;i<=n;i++){for(int j=1;j<=i/2;j++){//注意遍历到一半,超过这个值后面就是跟前面对称的了dp[i] = max(dp[i],max(j*dp[i-j],j*(i-j)));}}//打印结果// for(int i=1;i<=n;i++){//     cout<<dp[i]<<" ";// }return dp[n];}
};

时间复杂度:O(n^2)

空间复杂度:O(n)

二、96.不同的二叉搜索树 

题目链接/文章讲解/视频讲解:http://​ 题目链接/文章讲解/视频讲解:https://programmercarl.com/0343.%E6%95%B4%E6%95%B0%E6%8B%86%E5%88%86.html 状态:已解决 ​

状态:已解决

1.思路

        首先,我们需要清楚一个二叉树的构成:左子树、中间结点、右子树中间节点的左子树和右子树也都是一棵二叉树,意味着二叉树可以再分。这个结构是不是似曾相识!!我们知道动规问题也是可再分的:一个问题可以分解成若干的子问题,这也意味着一个问题实则由若干个子问题组成,跟二叉树由若干个左右二叉树组成的结构一样!因此,我们就可以类比地知道左右子树就是一个子问题,也就是说,我们要求一棵完整二叉树的构成,就是要在左右两棵子树的构成上,将二者再次合成一个二叉树,那么,一个完整二叉树的形态数就等于所有的左子树形态数*右子树形态数之和

        那么怎么分左子树和右子树呢?因为这里构造二叉树是根据二叉树的节点数来的,那么意味着左子树形态集合的不同就代表构成它们的节点数不同(n=3和n=5构造的左子树形态集合不同),因此,我们只需要控制每次构造左子树的节点数不同(右子树节点数也对应不同),就能得到n个节点所有可能的左子树形态集合。那么要怎样控制每次构成左子树的节点数不同呢?很简单,n个节点从左到右依次作为中间结点即可。

        根据上述分析,得到动规五部曲:

(1)确定dp数组以及下标的含义:

        因为我们只需要每个节点数对应的二叉树的形态数,故用一个一维数组保存信息就够了,dp[i]: i个节点构造的二叉树形态数为dp[i]。

(2)确定递推公式:

        外层循环i代表以 i 为总结点数的二叉树,内层循环 j 代表在i个节点中,选取 j 作为中间结点。然后我们统计以 i 为总结点数的二叉树的总形态。

        根据上面的分析,我们知道一个完整二叉树的形态数就等于所有的左子树形态数*右子树形态数之和。故dp[i] += dp[j - 1] * dp[i - j];

(3)初始化dp数组:

        初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。那么dp[0]应该是多少呢?从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。所以初始化dp[0] = 1。

(4)确定遍历顺序:

        因为要求以n为总节点数的二叉树的总形态数,需累计各种左子树形态数*右子树形态数的和,也就是需要先知道以(i - j) 为节点总数的左子树的形态数和以(j - i)为节点总数的右子树的形态数,故要先知道n前面的节点数的总形态数,故应该从前往后遍历。

(5)举例推导dp数组:

        以n=5为例:

2.代码实现 

class Solution {
public:int numTrees(int n) {vector<int> dp(n+1);dp[0]=1;for(int i=1;i<=n;i++){for(int j=1;j<=i;j++){dp[i] += dp[j-1]*dp[i-j];}}return dp[n];}
};

时间复杂度:O(n^2)

空间复杂度:O(n)

这篇关于代码随想录算法训练营第四十一天| LeetCode 343. 整数拆分、96.不同的二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906830

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到