【Python深度学习系列】网格搜索选择神经网络超参数:隐含层神经元数量(案例+源码)

本文主要是介绍【Python深度学习系列】网格搜索选择神经网络超参数:隐含层神经元数量(案例+源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是我的第259篇原创文章。

一、引言

图片

在深度学习中,超参数是指在训练模型时需要手动设置的参数,它们通常不能通过训练数据自动学习得到。超参数的选择对于模型的性能至关重要,因此在进行深度学习实验时,超参数调优通常是一个重要的步骤。常见的超参数包括:

  • model.add()

    • neurons(隐含层神经元数量)

    • init_mode(初始权值)

    • activation(激活函数)

    • dropout(丢弃率)

  • model.compile()

    • loss(损失函数)

    • optimizer(优化器)

      • learning rate(学习率)

      • momentum(动量)

      • weight decay(权重衰减系数)

  • model.fit()

    • batch size(批量大小)

    • epochs(迭代次数)

一般来说,可以通过手动调优、网格搜索(Grid Search)、随机搜索(Random Search)、自动调参算法方式进行超参数调优,本文采用网格搜索选择神经网络隐含层神经元数量。

二、实现过程

2.1 准备数据

dataset:

dataset = pd.read_csv("data.csv", header=None)
dataset = pd.DataFrame(dataset)
print(dataset)

图片

2.2 数据划分

# 切分数据为输入 X 和输出 Y
X = dataset.iloc[:,0:8]
Y = dataset.iloc[:,8]
# 为了复现,设置随机种子
seed = 7
np.random.seed(seed)
random.set_seed(seed)

2.3 创建模型

需要定义个网格的架构函数create_model,create_model里面的参数要在KerasClassifier这个对象里面存在而且参数名要一致。

def create_model(neurons_1):# 创建模型model = Sequential()model.add(Dense(neurons_1, input_shape=(8, ), kernel_initializer='uniform', activation='relu'))model.add(Dropout(0.2))model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))# 编译模型model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])return modelmodel = KerasClassifier(model=create_model, epochs=100, batch_size=80, verbose=0, neurons_1=1)

这里使用了scikeras库的KerasClassifier类来定义一个分类器,这里由于KerasClassifier没有定义隐含神经元的参数,需要自定义一个表示隐含层神经元的参数neurons_1,并赋默认值为1。

2.4 定义网格搜索参数

param_grid = {'neurons_1': [1, 5, 10, 15, 20, 25, 30]}

param_grid是一个字典,key是超参数名称,这里的名称必须要在KerasClassifier这个对象里面存在而且参数名要一致。

2.5 进行参数搜索

from sklearn.model_selection import GridSearchCV
grid = GridSearchCV(estimator=model,  param_grid=param_grid)
grid_result = grid.fit(X, Y)

使用sklearn里面的GridSearchCV类进行参数搜索,传入模型和网格参数。

2.6 总结搜索结果

print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):print("%f (%f) with: %r" % (mean, stdev, param))

结果:

图片

经过网格搜索,隐含层神经元数量,最优的结果是30。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

这篇关于【Python深度学习系列】网格搜索选择神经网络超参数:隐含层神经元数量(案例+源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906547

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Python中Tkinter GUI编程详细教程

《Python中TkinterGUI编程详细教程》Tkinter作为Python编程语言中构建GUI的一个重要组件,其教程对于任何希望将Python应用到实际编程中的开发者来说都是宝贵的资源,这篇文... 目录前言1. Tkinter 简介2. 第一个 Tkinter 程序3. 窗口和基础组件3.1 创建窗

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

浅析python如何去掉字符串中最后一个字符

《浅析python如何去掉字符串中最后一个字符》在Python中,字符串是不可变对象,因此无法直接修改原字符串,但可以通过生成新字符串的方式去掉最后一个字符,本文整理了三种高效方法,希望对大家有所帮助... 目录方法1:切片操作(最推荐)方法2:长度计算索引方法3:拼接剩余字符(不推荐,仅作演示)关键注意事

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

python版本切换工具pyenv的安装及用法

《python版本切换工具pyenv的安装及用法》Pyenv是管理Python版本的最佳工具之一,特别适合开发者和需要切换多个Python版本的用户,:本文主要介绍python版本切换工具pyen... 目录Pyenv 是什么?安装 Pyenv(MACOS)使用 Homebrew:配置 shell(zsh

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Java线程池核心参数原理及使用指南

《Java线程池核心参数原理及使用指南》本文详细介绍了Java线程池的基本概念、核心类、核心参数、工作原理、常见类型以及最佳实践,通过理解每个参数的含义和工作原理,可以更好地配置线程池,提高系统性能,... 目录一、线程池概述1.1 什么是线程池1.2 线程池的优势二、线程池核心类三、ThreadPoolE