从零实现诗词GPT大模型:数据集介绍和预处理

2024-04-15 06:28

本文主要是介绍从零实现诗词GPT大模型:数据集介绍和预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

专栏规划: https://qibin.blog.csdn.net/article/details/137728228

本章将介绍该系列文章中使用的数据集,并且编写预处理代码,处理成咱们需要的格式。

一、数据集介绍

咱们使用的数据集名称是chinese-poetry,是一个在github上开源的中文诗词数据集,根据仓库中readme.md中的介绍,该数据集是最全的中华古典文集数据库,包含 5.5 万首唐诗、26 万首宋诗、2.1 万首宋词和其他古典文集。诗人包括唐宋两朝近 1.4 万古诗人,和两宋时期 1.5 千古词人。
数据集的下载地址:https://github.com/chinese-poetry/chinese-poetry?tab=readme-ov-file,大家可以点击Code按钮,选择Download ZIP将该数据集下载到本地,如下图:
下载数据集
当然,作者收集数据也不易,大家可以顺手点一下star鼓励一下作者,如图:
start
如果你按照上面的步骤,把数据集下载到你本地了,解压后你可以看到如下图所示的目录结构
数据集

作者按照不同诗词类型进行了分类,并且在每个分类下提供了1个到多个的json文件,json文件里按照结构化数据组织了每一个诗词的信息,如下图
诗词结构

二、数据集预处理

上面咱们详细介绍了chinese-poetry数据集的下载方式和作者组织的结构,下面我们将提取每个诗词的标题和内容作为我们需要的部分,并聚合到一个文件中,以方便我们后续训练模型使用。
首先,我们需要把作者提供的诗词类目整理到一个数组中,方便我们后续进行目录的变量

classes = ['五代诗词', '元曲', '全唐诗', '四书五经', '宋词', '幽梦影', '御定全唐詩', '曹操诗集', '楚辞', '水墨唐诗','纳兰性德', '蒙学', '论语', '诗经']

然后,我们可以遍历该数组,拼接一个目录,遍历目录中中的文件,再进行文件处理

for cls in classes:dir = base_dir + clsfiles = os.listdir(dir)for f in files:f = f'{dir}/{f}'if os.path.isdir(f):if 'error' in f:continuefor ff in os.listdir(f):process_json(f'{f}/{ff}')else:process_json(f)

上面代码中,我们遍历每个类别的目录后,会列出该类别中所有的文件,文件如果是一个目录,则继续遍历这个目录,因为作者提供的目录结构会存在二级目录的情况。
最后,拿到每个json文件后,会调用process_json()函数处理对应的json文件。下面我们开始介绍process_json()函数。

process_json()函数会对上面代码中拿到的每个json文件进行处理,并且从json文件中提取我们需要的信息(诗词的标题和内容),重新组织结构,写入到一个新文件中;该函数还会根据一个简单的策略划分出训练集测试集(训练集用来训练我们的模型,测试集用来在训练过程中测试模型的性能)。整体代码如下

def process_json(file):if not file.endswith('.json'):returnwith open(file, 'r') as f:json_content = f.read()array = json.loads(json_content)if type(array) != list:returnif len(array) > 100:train_array = array[:-1]test_array = array[-1:]else:train_array = arraytest_array = Nonefor item in train_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_train_file)if test_array is not None:for item in test_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_test_file)

在代码中,首先会打开该json文件,并读取json文件中的内容;读到内容后,通过json.loads()函数将它解码成在python中可以识别的数据结构。
接下来,我们根据该分类下诗词的数据决定是否要划分出测试集,策略很简单,如果个数大于100,我们就把最后一个作为测试集的一部分,当然这个策略可以根据你的需求进行调整。
最后,我们从json中拿到titleparagraphs属性通过一个write_file()函数写到我们的新文件中。

write_file()函数的实现也很简单,作用就是拿到titleparagraphs,组织好结构写入到一个新文件中;我们预处理后的文件不会像原数据集那样提供多个文件,而是全部写到同一个文件中,所以,此时就得考虑一个问题:所有的诗词在一个文件中,怎么标识出一首诗结束了呢?办法很简单,我们在没首诗结束的时候添加一个<|endoftext|>特殊标识,该标识很重要,因为在后面我们训练模型的时候,该标识也会根据此标识学习一首诗到哪结束了(不需要结束,咱们模型就无止境的输出了)。

def write_file(item, dst_file):global error_counttitle = item['title']paragraphs = item['paragraphs']content = f'\n{title}'for p in paragraphs:content = f'{content}\n{p}'content = converter.convert(content)if '𫗋' in content:print(f'{content}----')error_count += 1returncontent = content + '<|endoftext|>'dst_file.write(content)

上面代码中,处理前面我们介绍的部分,存在两个特殊的地方

...
content = converter.convert(content)
...
if '𫗋' in content

第一个的作用是将繁体中文转换成简体字,因为原数据集中存在大量的繁体字,显然,我们不想让咱们的模型生成的诗词是繁体字形式,所以这里我选择将繁体字转换成简体字,这里借助了一个python的转换库opencc实现,大家可以通过pip3 install opencc-python-reimplemented进行安装,该库的使用方法如下

import opencc
# 繁转简
converter = opencc.OpenCC('t2s')
content = converter.convert(content)

第二个特殊的地方就是我们代码中有一个𫗋,这是因为,通过上述代码转换成简体字的时候会有一些字转换错误,所以我们这里直接将存在转换错误情况的诗过滤掉,当然,这种情况不会很多,大概几十首诗词,对于咱们几十万首诗词的数据集来说都是毛毛雨。

好了,上面就是咱们数据预处理的全部过程,最终你会得到一个如下结构的train.txttest.txt分别代表咱们前面提到过的训练集测试集
预处理后的数据集
最后,我把全部代码整理出来,方便大家可以复制到本地直接运行

import os, json
import openccbase_dir = 'chinese-poetry-master/'
classes = ['五代诗词', '元曲', '全唐诗', '四书五经', '宋词', '幽梦影', '御定全唐詩', '曹操诗集', '楚辞', '水墨唐诗','纳兰性德', '蒙学', '论语', '诗经']dst_train_file = open('./train.txt', 'w')
dst_test_file = open('./test.txt', 'w')converter = opencc.OpenCC('t2s')
error_count = 0def write_file(item, dst_file):global error_counttitle = item['title']paragraphs = item['paragraphs']content = f'\n{title}'for p in paragraphs:content = f'{content}\n{p}'content = converter.convert(content)if '𫗋' in content:print(f'{content}----')error_count += 1returncontent = content + '<|endoftext|>'dst_file.write(content)def process_json(file):if not file.endswith('.json'):returnwith open(file, 'r') as f:json_content = f.read()array = json.loads(json_content)if type(array) != list:returnif len(array) > 100:train_array = array[:-1]test_array = array[-1:]else:train_array = arraytest_array = Nonefor item in train_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_train_file)if test_array is not None:for item in test_array:if 'title' not in item.keys() or 'paragraphs' not in item.keys():continuewrite_file(item, dst_test_file)for cls in classes:dir = base_dir + clsfiles = os.listdir(dir)for f in files:f = f'{dir}/{f}'if os.path.isdir(f):if 'error' in f:continuefor ff in os.listdir(f):process_json(f'{f}/{ff}')else:process_json(f)dst_train_file.close()
dst_test_file.close()dst_train_file = open('./train.txt', 'r')
dst_test_file = open('./test.txt', 'r')train_count = 0
test_count = 0for line in dst_train_file:if '<|endoftext|>' in line:train_count += 1for line in dst_test_file:if '<|endoftext|>' in line:test_count += 1print(f'train_count: {train_count}, test_count: {test_count}, error_count: {error_count}')

下一篇,我们将对pytorch框架做一个简单的入门介绍

这篇关于从零实现诗词GPT大模型:数据集介绍和预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905076

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服