Python和R概率统计算法建模评估气象和运动

2024-04-14 20:04

本文主要是介绍Python和R概率统计算法建模评估气象和运动,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 概率统计数学:🎯Python和R计算和算法实现
  2. 气象学:
    1. 计算和可视化:🎯全球陆地-海洋平均年平均表面温度:🖊直方图温度异常,🖊显示分位数-分位数,🖊绘制线性趋势线,🖊绘制温度空间图,🖊温度空间图的全景图,🖊一维空间一维时间数据和霍夫莫勒图,🖊三维空间和一维时间文件及其地图绘制。🖊ChatGPT生成全球温度。
    2. 概率统计计算和绘制:🎯气象变量:🖊日降水量,🖊干旱期的概率分布函数和累计分布函数,二项分布和正态分布、🖊气候数据集估计平均值、方差、偏度和峰度,🖊降水量泊松分布。🎯估算:🖊给定日期地面气温异常平均值和置信区间,🖊计算气温异常假设检验,🖊计算气温统计学有效样本大小,🖊计算给定期间气温统计学上明显差异,🖊计算平均晴天、部分多云、多云天数,🖊将月降雨量数据拟合到伽玛分布,🖊使用累积分布的柯尔莫哥洛夫-斯米尔诺夫检验检查观测值和预期值拟合度,🖊对Kendall tau 检验既存同类数据关系,🖊曼-肯德尔趋势检验。
    3. 回归建模:🎯温度:🖊下降率和近似线性建模,单变量线性回归的假设和公式推导,斜率和相关性关系,置信区间预测,🖊鉴于地理坐标的温度下降率多线性回归建模,🖊全球温度的多线性回归非线性拟合。
    4. 矩阵数据:🎯数学线性计算:🖊奇异值分解海平面压力,🖊计算和可视化温度异常的时空因子的样本协方差矩阵,🖊计算和绘制赤道纬向带上温度异常的协方差矩阵特征值的曲线图,🖊德宾-沃森独立性测试样本,🖊指定特征值和标准误差条的碎石图。
    5. 时间序列:🎯二氧化碳数据:🖊基林曲线,🖊误差趋势和季节分解时间序列数据,🖊基林曲线的预测和观测数据的拟合,🖊最低气温观测数据及其趋势、季节周期和随机残差,🖊模拟自回归序列,🖊频谱分析,傅里叶变换。
    6. 机器学习:🎯气温和风:🖊每日天气数据的 K 均值聚类,散列图显示温度和风向关系,🖊聚类凸包数据分析,🖊随机森林回归城市每日臭氧层数据。
    7. 🎯气候和干旱指数:气候指数算法代码实现
  3. 运动学:
    1. 🎯可靠与不可靠性数据分析:🖊过滤、🖊汇总、🖊绘制,🖊专业运动员级成功可靠性。

    2. 🎯一般和多线性回归建模:🖊使用探索性数据分析绘制数据、🖊建模,拟合模型,运行模型获得汇总结果、🖊使用统计模型多线性建模和拟合模型,汇总模型结果。

    3. 🎯广义线性模型:🖊建模,绘制逻辑曲线、🖊从模型获取运动超出预期的完成百分比、🖊计算超出预期的完成百分比 vs 完成百分比的可靠性。

    4. 🎯泊松回归和体彩投注:🖊计算泊松概率分布,直方图观察比赛变化,🖊建模,从收支平衡计算投注方式,🖊计算泊松回归系数对模型结果的影响。

    5. 🎯主成分分析和聚类:🖊散列图分析运动员身体特征及运动特点、🖊降维(主成分分析)分析运动员成绩,🖊聚类算法:K均值法计算运动员和比赛结果。

    6. 机器学习:🎯视频计算人体运动学和动力学,大语言模型推理运动模式。

🍇Python分析网格降水量

import glob
import matplotlib.pyplot as plt
import urllib.request
import xarray as xr
for yr in range(2011,2015): url = f'https://downloads.precip.V1.0.{yr}.nc'savename = url.split('/')[-1]urllib.request.urlretrieve(url,savename)

让我们从简单开始:打开两年的数据并将它们连接到一个文件:

ds2011 = xr.open_dataset('precip.V1.0.2011.nc')
ds2012 = xr.open_dataset('precip.V1.0.2012.nc')
ds2011_2012 = xr.concat([ds2011,ds2012], dim='time')

现在,让我们尝试类似的操作,但通过更有效的方式(特别是文件数量超过两个):

ds2011_2014 = xr.open_mfdataset('precip.V1.0.*.nc', concat_dim='time', combine='nested')

现在让我们关注 2012 年并提取每月降水量总和并绘制其中一个月的简单绘图:

上面的图很简单,质量不高。现在,我们将为所有 12 个月制定一个更加个性化的情节,如下所示:

import calendar 
landmask = ds2012.precip.sum(dim='time')>0
fig = plt.figure(figsize=[12,8], facecolor='w')
plt.subplots_adjust(bottom=0.15, top=0.96, left=0.04, right=0.99, wspace=0.2, hspace=0.27) 
nrows = 3
ncols = 4
for i in range(1, 13):plt.subplot(nrows, ncols, i)dataplot = ds2012_mon.precip[i-1, :, :].where(landmask) p = plt.pcolormesh(ds2012_mon.lon, ds2012_mon.lat, dataplot,vmax = 400, vmin = 0, cmap = 'nipy_spectral_r',) plt.xlim([233,295])plt.ylim([25,50])plt.title(calendar.month_name[dataplot.month.values], fontsize = 13, fontweight = 'bold', color = 'b')plt.xticks(fontsize = 11)plt.yticks(fontsize = 11)if i % ncols == 1: plt.ylabel('Latitude', fontsize = 11, fontweight = 'bold')if i > ncols*(nrows-1): plt.xlabel('Longitude', fontsize = 11, fontweight = 'bold')cax = fig.add_axes([0.25, 0.06, 0.5, 0.018])
cb = plt.colorbar(cax=cax, orientation='horizontal', extend = 'max',)
cb.ax.tick_params(labelsize=11)
cb.set_label(label='Precipitation (mm)', color = 'k', size=14)plt.savefig('Fig_prec_mon_2012.png', format = 'png', dpi = 300)

现在假设我们想要提取特定边界的数据并查看该感兴趣区域内的平均条件。为简单起见,我们可以考虑一个矩形框。对于本例,让我们看一个几乎与此地类似的矩形框

top = 40
bottom = 37
left = 258
right = 265.4
ds_sel = ds2011_2014.isel(lon=(ds2011_2014.lon >= left) & (ds2011_2014.lon <= right),lat=(ds2011_2014.lat >= bottom) & (ds2011_2014.lat <= top),)
ds_sel_avg = ds_sel.mean(dim=['lat','lon'])

现在让我们绘制所选区域每年的累计日降水量。为了让事情变得更简单,让我们从记录中的所有闰年中删除 2 月 29 日。

ds_sel_avg_noleap = ds_sel_avg.sel(time=~((ds_sel_avg.time.dt.month == 2) & (ds_sel_avg.time.dt.day == 29)))

结果如下:

ds_sel_avg_noleap

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python和R概率统计算法建模评估气象和运动的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903879

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合