R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

本文主要是介绍R数据分析:如何做数据的非线性关系,多项式回归的做法和解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性关系其实是最常见也是最有效,同时还是最好解释的,不过变量间复杂的关系我们用多项式回归做出来可能会更加的准确。刚好有位粉丝的数据需要用到多项式回归,今天就给大家写写。

要理解非线性关系,首先我们看看线性关系,假设情况如下:商品的价格为p,销售量为q,总价为y,那么qy之间就是线性关系:

p <- 0.5
q <- seq(0,100,1)
y <- p*q
plot(q,y,type='l',col='red',main='线性关系')

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

但是考虑现实中的情况:一个商品本来价格p是0.5,买的人多了价格会上涨,此时线性关系不成了哦:

y <- 450 + p*(q-10)^3
plot(q,y,type='l',col='navy',main='Nonlinear relationship',lwd=3)

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

如果你得数据确实不是线性关系,就得考虑数据转化或者拟合多项式回归。

数据模拟

为了更好地给大家演示,我们需要模拟一个数据集出来:

q <- seq(from=0, to=20, by=0.1)
y <- 500 + 0.4 * (q-10)^3
noise <- rnorm(length(q), mean=10, sd=80)
noisy.y <- y + noise

上面的代码首先模拟200个销售量,和相应的总价y,同时还给y加了一点点噪声。

我们把模拟数据画出来瞅瞅:

plot(q,noisy.y,col='deepskyblue4',xlab='q',main='Observed data')
lines(q,y,col='firebrick1',lwd=3)

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

注意我们用lines这个方法给数据串了一条趋势线,可以很明显的看出来我们的数据不是线性关系。

多项式回归

那么对于我们的数据我可以做如下的多项式回归:

model <- lm(noisy.y ~ poly(q,3))
model <- lm(noisy.y ~ x + I(X^2) + I(X^3))

上面两种方法都是一个道理,但是第一种可以很好的避免多重共线性问题,你想嘛,x的平方和x的三次方肯定高度相关啊。所以大家用第一种方法哦,输出结果如下:

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

上面的结果中没有系数的置信区间,我们可以:

confint(model, level=0.95)

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

我么还可以画出来模型的残差图:

plot(fitted(model),residuals(model))

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

总的来说,我们的模型的R方为0.77,q的一次项和3次项都是有统计学意义的,模型还不错。

是不是可以用这个模型做预测呢?

这又涉及到机器学习了,往下看:

我们可以用训练的这个模型来预测我们的原始数据:

predicted.intervals <- predict(model,data.frame(x=q),interval='confidence',level=0.99)

你去查看predicted.intervals的值,你可以看到我们200个数据的预测值和置信区间。

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

最好还是给大家可视化一下,我们打算把原始的趋势线和我们的置信区间的上下限都画在同一个图上:

lines(q,predicted.intervals[,1],col='green',lwd=3)
lines(q,predicted.intervals[,2],col='black',lwd=1)
lines(q,predicted.intervals[,3],col='black',lwd=1)

R数据分析:如何做数据的非线性关系,多项式回归的做法和解释

 

可以看到上图中,我们的砖红色的线基本都在置信区间的上下限范围内,证明了模型不错。

 

这篇关于R数据分析:如何做数据的非线性关系,多项式回归的做法和解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902443

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内