分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

本文主要是介绍分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

目录

    • 分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别
      • 分类效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
2.数据输入120个特征,输出8个类别,三个主程序,依次运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

迁移学习(Transfer Learning):迁移学习是指将在一个任务上学到的知识迁移到另一个相关任务上的技术。在本场景中,迁移学习可以用于从已有的数据集或模型中学习到的知识,来帮助解决多特征分类或故障识别问题。

GASF(Gramian Angular Summation Field):GASF是一种用于表示时间序列数据的可视化技术,通过将时间序列数据转换为二维图像来捕捉其特征。GASF可以将时间序列数据转换为格拉姆角场,提供了一种在图像领域中应用卷积神经网络的方式。

CNN(Convolutional Neural Network):卷积神经网络是一种深度学习模型,特别适用于处理具有网格结构数据(如图像)的任务。在这个场景中,CNN用于处理GASF表示的时间序列数据,以从中提取特征。

Multihead Attention(多头注意力机制):多头注意力机制是模型中的一种关键机制,用于捕捉输入序列中的重要信息。它将输入序列分成多个子序列,并对每个子序列进行注意力计算。这种机制可以使模型在学习过程中关注不同子序列的不同方面。

模型描述

在这里插入图片描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------% 从data中获取当前样本数据featureData = data(sampleIdx, 1:end - 1);X = featureData;m = length(X);% 将数据归一化到[0, 1]X_normalized = (X - min(X)) / (max(X) - min(X));% 分成Q个分位箱(按照个数),从小往大:1234Q = 4;% 将每个元素映射到分位箱1234,X_Q = ones(1, numDataPoints);threshold = 0;% 初始化阈值thresholds = ones(1, Q + 1);for i = 2 : Q + 1% 循环计算小于当前阈值的数据个数,达到阈值时跳出循环while sum(X_normalized < threshold) < numDataPoints * (i - 1) / Qthreshold = threshold + 0.0001;end% 记录每一个分位箱的阈值thresholds(i) = threshold;% 将原始数据向量变成对应的分位箱次序向量X_Q(find(X_normalized < thresholds(i) & X_normalized > thresholds(i - 1))) = i - 1;endsum_11 = 0; sum_12 = 0; sum_13 = 0; sum_14 = 0;sum_21 = 0; sum_22 = 0; sum_23 = 0; sum_24 = 0;sum_31 = 0; sum_32 = 0; sum_33 = 0; sum_34 = 0;sum_41 = 0; sum_42 = 0; sum_43 = 0; sum_44 = 0;
for i = 1:numImagesimageFileName = sortedImageFiles(i).name;imagePath = fullfile(inputFolder, imageFileName);% 读取图像img = imread(imagePath);% 调整图像尺寸    
%% 设置训练选项
options = trainingOptions('adam', ...            % 使用Adam优化器'MiniBatchSize', 15, ...                     % 每个迭代的迷你批次大小'MaxEpochs', 5, ...                          % 最大训练迭代次数'InitialLearnRate', 0.001, ...               % 初始学习率'Shuffle', 'every-epoch', ...                % 每个迭代都对数据进行洗牌'Verbose', false, ...                        % 不显示训练过程中的详细输出'Plots', 'training-progress');               % 显示训练进度图

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

这篇关于分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902150

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭