使用统计学分析《鱿鱼游戏》中“玻璃垫脚石”的生存概率

2024-04-13 19:48

本文主要是介绍使用统计学分析《鱿鱼游戏》中“玻璃垫脚石”的生存概率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

dea3f98bef99834a54373d700c1912c5.png

来源:Deephub Imba本文约2600字,建议阅读8分钟 
如果你要在鱿鱼游戏中玩玻璃垫脚石,你会选择那个数字?

2f3731b94f5585578cc22fddd9d642a6.png

《鱿鱼游戏》是最近很火的电影,在阅读本篇文章之前,我假设你已经看过这部剧集了。比赛中需要使用不同的策略才能获胜,比如第7集中的“玻璃垫脚石”引起了我的注意。这是一场至关重要的比赛,16 名玩家中只有 3 名幸存者。我认为这款游戏与其他游戏不同,因为从统计的角度来看,这是一款赌博游戏,玩家的行为并不能帮助他们获胜。现在让我们来使用数据来证明这一点。

a15fd7348249fad70df6d6e97c619d6f.png

不管你信不信其实每个玩家的命运几乎在他们选号时就已经确定了,而他们在游戏中的表现并没有多大关系。拥有运气也是一种超能力(例如海贼王中的巴基大神 ,一拳超人中的King)。但是对于我们普通人来说,了解一些统计知识就可以让我们在这样的游戏中生存。

在这篇文章中,我将讨论以下问题:

  • 只有3名幸存者活下来了。如果再次玩游戏,是否有可能有更多(或更少的幸存者)?出现其他结果的概率是多少?

  • 这个游戏的生存概率是3/16吗?生存概率与游戏顺序有什么关系?

  • 如何根据猜对了多少玻璃来判断玩家是否是骗子?

  • 如何在这场比赛中生存?


来自平行宇宙的游戏的其他结果

为了回答这些问题,我使用“生存分析”的思想进行了模拟。它是一种广泛用于分析死亡、疾病发生、康复等事件的统计分析[1],以计算受试者存活的概率。

进行生存分析的一种方法是通过模拟运行数千或数百万次实验,然后计算你感兴趣的生存概率。因为运行一个实验就像是在观察平行宇宙中会发生什么,您甚至可以从一个先知(如果存在先知)的视角来阅读从模拟结果中得到的悲伤或快乐的故事!

让我们先回顾游戏规则:所有玩家选择1到16之间的数字,然后他们将在限定时间内按照这个顺序过桥。桥牌上有18排玻璃,玩家需要从每排中挑选左边或右边的玻璃。如果他们选对了就可以继续走下去,否则就会从桥上掉下来死去。

为了简化模拟的问题,我需要做一些假设:

如果玩家没有死,他们会继续行走。

玩家随机选择玻璃(即猜对每一行的概率是0.5)——不允许作弊。

在模拟游戏中并不考虑时间效应(通过取消模拟中的时间限制对玩家表示一些怜悯,其实是简化了我们的计算)。

现在我们可以用Python建立的平行世界,给玩家另一个玩游戏的机会。我创建了一个Python函数来模拟游戏过程,计算生还者的数量,以及他们猜对了多少次。让我们看看运行游戏后得到的一些有趣结果:

平行宇宙A得到了类似结果

我们有 3 个幸存者但是与节目不同的是,玻璃专家(节目第14位玩家)初试失败!大部分玩家一试就没有猜对。

11f9d4096656f052b47acaddd82f72e5.png

平行宇宙B是一个快乐故事

13名玩家在这个宇宙中幸存下来,玩家4猜对了9次!团队的英雄!但是猜对 9 次的概率是多少?这个玩家是作弊了吗?还是霸王色运气?我们稍后会在文中讨论这个问题。

b151f8321de8e35261bc33c5ce173fb0.png

平行宇宙C是悲伤的故事

这对于拥有 9 名幸存者的团队来说还不错。我说这很可悲是因为玩家4 猜对了 6 次,然后他就死了。4号玩家R.I.P。对团队贡献最大,但是还没没能活下来。

4e1238918efc493c19ae7805f731ed64.png


最有可能发生什么?

28446f1c58a6757b5048a41fb9b7b75f.png

上面的结果告诉我们,每次运行结果都可能大不相同。我们可以根据幸存者的数量来计算每个不同结果的概率吗?当然可以!我们只需要多次运行实验(我在分析中运行了 100,000 次),然后我们可以根据模拟计算概率。

让我们看看这些概率:

cbb2049f15e9c4684da196cc474d9dc9.png

7076701ae538f9d28a8936244bcaafc3.png

正如我们从上面看到的(正态分布对吧),这场比赛最有可能在最后有 7 名幸存者。几乎不可能没有幸存者(概率为 0.1%),或者整个团队的都是幸存者(概率为 0)。也就是说这个游戏注定有人要死去。

但是,我们也应该注意到,节目中的游戏比我们在这里模拟的要困难得多。比如:有时间限制。可以把人推到前面,试图改变游戏顺序,甚至作弊。但多亏了这些“人为因素”,这部剧看起来更精彩,也更关键,只有3名幸存者。

哪些玩家真的很幸运?

正如我在开头提到的,这是一个依赖顺序来玩的游戏。那么他们的生存机会如何随着顺序的的变化而变化吗?这是模拟输出:

ab733075a3096e87396e568197c76e8b.png

bce026e1ad2be6db229d790fe673625e.png

前 6 名玩家的生存机会不到 5%。而对于最后4名玩家(13-16号),他们可以在这场比赛中放松身心,生存机会超过95%。但是即使曹尚佑(№218)学了统计学,知道自己和前面的人都有可能活下来,我想他还是会选择当杀手,推那个可怜的家伙,因为是导演让推的。

如何判断玩家是否作弊?

   “Everyone Is Equal While They Play This Game. Here, The Players Get To Play A Fair Game Under The Same Conditions. Those People Suffered From Inequality And Discrimination Out In The World, And We’re Giving Them The Last Chance To Fight Fair And Win.” — The Front Man[2]

8032870b8716fbbdc4e2c98be7cfc608.png

如果一男(图片中的老家伙,No.001)参加了这场比赛并且他知道所有正确的步骤,你能说他知道一些事情而不是仅仅依靠运气吗?

我们可以使用一些基本的贝叶斯统计来解决这个问题。假设我们有:

赛前对一男的了解:我们相信他是真实玩家,有99%的几率,而他作弊的几率只有1%。

问题:在我们确信他作弊之前,他需要猜对多少次?

贝叶斯统计的解决方案:

1.让我们先假设他猜对了 5 次:

先验比率:作弊与非作弊是 1/99

问题:不作弊的概率为1/(2⁵)=1/32,作弊猜对5次的概率为1,所以似然比为1/(1/32)=32

后验比率 = 先验比率 * 似然比率 = 1/99 * 32 = 32/99

后验:作弊概率 = 32/(32+99) = ~24%。

2.现在假设他猜对了 10 次:

先验比率:作弊与非作弊是 1/99

问题:不作弊的概率为1/(2¹⁰)=1/1024,作弊者猜对10次的概率为1,所以似然比为1/(1/1024)=1024

后验比率 = 先验比率 * 似然比率 = 1/99 * 1024 = 1024/99

后验:作弊概率 = 1024/(1024+99) = ~91.2%。

正如我们从计算中看到的,如果玩家猜对了 10 次,我们将非常确定他是一个作弊者。概率为:91.2%。

作为玩家如何在这款游戏中生存?

最终解决方案:将您的幸运数字更改为更大的数字。

这是肯定的,从上面我们了解到生存的最好方法是获得最后一个数字:13-16 都是不错的选择(假设您不会被身后的玩家杀死)。

如果你运气不好,得到了 1-8 的数字,那么最好的生存机会就是说服其他 1-9 的玩家退出(根据规则,如果一半以上的人同意,游戏就可以停止)。那么如何说服他们放弃?说服前8名玩家并不难,因为最大的生存机会只有0.41。但是要说服机会为0.6的第9位玩家就很难了!我不知道节目的导演是否计算过这个数字(我个人觉得应该是算过了),但我想在这种情况下,9号玩家不会轻易被说服(假设他们都知道统计数据)。

最后本文的代码在这里:

https://github.com/mingjiezhao/squid_game_survival_analysis


引用:

[1] https://screenrant.com/squid-game-episode-7-game-bridge-rules-explained/

[2]https://en.wikipedia.org/wiki/Survival_analysis

[3] Squid game, Netflix

[4] https://screenrant.com/squid-game-netflix-bravest-characters/

作者:本篇文章是一个在Disney工作的的漂亮小姐姐 Mingjie Zhao撰写的,欢迎大家关注她的github

编辑:黄继彦

校对:林亦霖

d1a01ee3b35c0b0df86dceb6ace944d3.png

这篇关于使用统计学分析《鱿鱼游戏》中“玻璃垫脚石”的生存概率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901056

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完