开源模型应用落地-chatglm3-6b-zero/one/few-shot-入门篇(五)

2024-04-13 16:52

本文主要是介绍开源模型应用落地-chatglm3-6b-zero/one/few-shot-入门篇(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、前言

    Zero-Shot、One-Shot和Few-Shot是机器学习领域中重要的概念,特别是在自然语言处理和计算机视觉领域。通过Zero-Shot、One-Shot和Few-Shot学习,模型可以更好地处理未知的情况和新任务,减少对大量标注数据的依赖,提高模型的适应性和灵活性。这对于推动人工智能在现实世界中的应用具有重要意义,尤其是在面对数据稀缺、标注成本高昂或需要快速适应新环境的场景下。


二、术语

2.1. Zero-shot

    在零样本学习中,模型可以从未见过的类别中进行推理或分类。这意味着模型可以使用在其他类别上学到的知识来推广到新的类别,而无需在新类别上进行训练。

2.2. One-shot

    在单样本学习中,模型根据非常有限的样本进行学习。通常情况下,模型只能从每个类别中获得一个样本,并且需要从这个样本中学习如何进行分类。

2.3. Few-shot

    在少样本学习中,模型可以通过很少的样本进行学习,并且能够推广到新的类别。虽然少样本学习的定义没有具体的样本数量限制,但通常指的是模型只能从每个类别中获得很少的样本(例如,几个或几十个)。


三、前置条件

3.1. windows or linux操作系统均可

3.2. 下载chatglm3-6b模型

从huggingface下载:https://huggingface.co/THUDM/chatglm3-6b/tree/main

从魔搭下载:魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/fileshttps://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/files

 3.3. 创建虚拟环境&安装依赖

conda create --name chatglm3 python=3.10
conda activate chatglm3
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 sentencepiece accelerate

四、技术实现

4.1.Zero-Shot

# -*-  coding = utf-8 -*-
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import tracebackmodelPath = "/model/chatglm3-6b"def chat(model, tokenizer, message, history, system):messages = []if system is not None:messages.append({"role": "system", "content": system})if history is not None:for his in history:user,assistant = hismessages.append({"role": "user", "content": user})messages.append({"role": "assistant", 'metadata': '', "content": assistant})try:for response in model.stream_chat(tokenizer,message, messages,  max_length=2048, top_p=0.9, temperature=0.45, repetition_penalty=1.1,do_sample=True):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto",  trust_remote_code=True).cuda()model = model.eval()# print(model)return modelif __name__ == '__main__':model = loadModel()tokenizer = loadTokenizer()start_time = time.time()message = '''
我希望你根据关系列表从给定的输入中抽取所有可能的关系三元组,并以JSON字符串[{'head':'', 'relation':'', 'tail':''}, ]的格式回答,relation可从列表['父母', '子女', '祖孙', '配偶']中选取,注意不需要返回不相关的内容。
给定输入:2023年,张三和王五结婚生了个女儿,叫王雨菲'''system = '你是一个人工智能助手,很擅长帮助人类回答问题'history = Noneresponse = chat(model, tokenizer, message,history,system)for answer in response:print(answer)end_time = time.time()print("执行耗时: {:.2f}秒".format(end_time - start_time))

调用结果:

4.2.One-Shot

# -*-  coding = utf-8 -*-
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import tracebackmodelPath = "/model/chatglm3-6b"def chat(model, tokenizer, message, history, system):messages = []if system is not None:messages.append({"role": "system", "content": system})if history is not None:for his in history:user,assistant = hismessages.append({"role": "user", "content": user})messages.append({"role": "assistant", 'metadata': '', "content": assistant})try:for response in model.stream_chat(tokenizer,message, messages,  max_length=2048, top_p=0.9, temperature=0.45, repetition_penalty=1.1,do_sample=True):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto",  trust_remote_code=True).cuda()model = model.eval()# print(model)return modelif __name__ == '__main__':model = loadModel()tokenizer = loadTokenizer()start_time = time.time()message = '''
我希望你根据关系列表从给定的输入中抽取所有可能的关系三元组,并以JSON字符串[{'head':'', 'relation':'', 'tail':''}, ]的格式回答,relation可从列表['父母', '子女', '祖孙', '配偶']中选取,注意不需要返回不相关的内容。
你可以参照以下示例:示例输入:在三十年前的一个风雨交加的夜晚,张三生了个儿子李四。示例输出:{"head": "张三","relation": "父子","tail": "李四"}。
给定输入:2023年,张三和王五结婚生了个女儿,叫王雨菲'''system = '你是一个人工智能助手,很擅长帮助人类回答问题'history = Noneresponse = chat(model, tokenizer, message,history,system)for answer in response:print(answer)end_time = time.time()print("执行耗时: {:.2f}秒".format(end_time - start_time))

调用结果:

4.3.Few-Shot

# -*-  coding = utf-8 -*-
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import tracebackmodelPath = "/model/chatglm3-6b"def chat(model, tokenizer, message, history, system):messages = []if system is not None:messages.append({"role": "system", "content": system})if history is not None:for his in history:user,assistant = hismessages.append({"role": "user", "content": user})messages.append({"role": "assistant", 'metadata': '', "content": assistant})try:for response in model.stream_chat(tokenizer,message, messages,  max_length=2048, top_p=0.9, temperature=0.45, repetition_penalty=1.1,do_sample=True):_answer,_history = responseyield _answerexcept Exception:traceback.print_exc()def loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto",  trust_remote_code=True).cuda()model = model.eval()# print(model)return modelif __name__ == '__main__':model = loadModel()tokenizer = loadTokenizer()start_time = time.time()message = '''
我希望你根据关系列表从给定的输入中抽取所有可能的关系三元组,并以JSON字符串[{'head':'', 'relation':'', 'tail':''}, ]的格式回答,relation可从列表['父母', '子女', '祖孙', '配偶']中选取,注意不需要返回不相关的内容。
你可以参照以下示例:示例输入1:在三十年前的一个风雨交加的夜晚,张三生了个儿子李四。示例输出1:{"head": "张三","relation": "父子","tail": "李四"}。示例输入2:小明和小李上个月结婚了。示例输出2:{"head": "小明","relation": "配偶","tail": "小李"}。
给定输入:2023年,张三和王五结婚生了个女儿,叫王雨菲'''system = '你是一个人工智能助手,很擅长帮助人类回答问题'history = Noneresponse = chat(model, tokenizer, message,history,system)for answer in response:print(answer)end_time = time.time()print("执行耗时: {:.2f}秒".format(end_time - start_time))


五、附带说明

5.1.测试结果

    ChatGLM3-6B模型规模相对较小,在关系抽取测试任务中表现一般,在同样的模型参数和测试数据下,QWen1.5-7B-Chat的表现会更加优异,在Zero-Shot场景下,也有较好的表现。具体测试情况如下:

Zero-Shot:基本能识别出关系三元组,同时返回较多无效内容

One-Shot:能准确识别出关系三元组,且无返回无效内容

Few-Shot:能准确识别出关系三元组,且无返回无效内容

这篇关于开源模型应用落地-chatglm3-6b-zero/one/few-shot-入门篇(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900693

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短