本文主要是介绍[大模型]Qwen1.5-4B-Chat WebDemo 部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Qwen1.5-4B-Chat WebDemo 部署
Qwen1.5 介绍
Qwen1.5 是 Qwen2 的测试版,Qwen1.5 是基于 transformer 的 decoder-only 语言模型,已在大量数据上进行了预训练。与之前发布的 Qwen 相比,Qwen1.5 的改进包括 6 种模型大小,包括 0.5B、1.8B、4B、7B、14B 和 72B;Chat模型在人类偏好方面的性能显著提高;基础模型和聊天模型均支持多种语言;所有大小的模型均稳定支持 32K 上下文长度,无需 trust_remote_code。
环境准备
在autodl平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8(11.3版本以上的都可以)
接下来打开刚刚租用服务器的JupyterLab, 图像 并且打开其中的终端开始环境配置、模型下载和运行演示。
pip换源和安装依赖包
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simplepip install modelscope==1.9.5
pip install "transformers>=4.37.0"
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install transformers_stream_generator==0.0.4
模型下载
使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。
在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py 执行下载,下载模型大概需要 2 分钟。
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
from modelscope import GenerationConfig
model_dir = snapshot_download('qwen/Qwen1.5-7B-Chat', cache_dir='/root/autodl-tmp', revision='master')
代码准备
在/root/autodl-tmp
路径下新建 chatBot.py
文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。
# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import streamlit as st# 在侧边栏中创建一个标题和一个链接
with st.sidebar:st.markdown("## Qwen1.5 LLM")"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"# 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512max_length = st.slider("max_length", 0, 1024, 512, step=1)# 创建一个标题和一个副标题
st.title("💬 Qwen1.5 Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")# 定义模型路径
mode_name_or_path = '/root/autodl-tmp/qwen/Qwen1.5-7B-Chat'# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():# 从预训练的模型中获取tokenizertokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False)# 从预训练的模型中获取模型,并设置模型参数model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype=torch.bfloat16, device_map="auto")return tokenizer, model# 加载Qwen1.5-4B-Chat的model和tokenizer
tokenizer, model = get_model()# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:st.session_state["messages"] = [{"role": "assistant", "content": "有什么可以帮您的?"}]# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:st.chat_message(msg["role"]).write(msg["content"])# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():# 将用户的输入添加到session_state中的messages列表中st.session_state.messages.append({"role": "user", "content": prompt})# 在聊天界面上显示用户的输入st.chat_message("user").write(prompt)# 构建输入 input_ids = tokenizer.apply_chat_template(st.session_state.messages,tokenize=False,add_generation_prompt=True)model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]# 将模型的输出添加到session_state中的messages列表中st.session_state.messages.append({"role": "assistant", "content": response})# 在聊天界面上显示模型的输出st.chat_message("assistant").write(response)# print(st.session_state)
运行 demo
在终端中运行以下命令,启动streamlit服务,并按照 autodl
的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。
streamlit run /root/autodl-tmp/chatBot.py --server.address 127.0.0.1 --server.port 6006
如下所示:
这篇关于[大模型]Qwen1.5-4B-Chat WebDemo 部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!