神经网络突变自动选择AI优化算法,速度提升50000倍!

2024-04-12 19:48

本文主要是介绍神经网络突变自动选择AI优化算法,速度提升50000倍!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=gif

640?wx_fmt=png




  新智元报道  

来源:venturebeat、IBM

编辑:大明

【导读】为特定任务寻找最合适的优化机器学习算法是一件耗时费力的工作,因为没有一种算法能适用于所有任务。IBM的研究人员提出“神经突变”进化算法,可以为机器学习任务自动选择最合适的算法,选择速度提升了50000倍,错误率仅上升0.6%.

机器学习系统并非是“生而平等”的。没有一种算法能应对所有的机器学习任务,这就让寻找最优的机器学习算法成为一项艰巨又耗时的工作。不过这个问题现在有希望解决了,最近IBM的研究人员开发了一套能够自动选择AI优化算法的系统。


IBM爱尔兰研究院的数据科学家Martin Wistuba,在其近日发表的博客文章中介绍了自己开发的这套系统。他声称,该系统将自动选择优化AI算法的速度提升了5万倍,错误率仅上升了0.6%。


Wistuba表示,这套进化算法系统能将选择适当的机器学习架构的时间缩减至几个小时,让每个人都能有条件对深度学习网络架构进行优化。


面向机器学习的神经网络突变算法


该方法将卷积神经网络架构视为神经细胞序列,然后应用一系列突变,以找到一种结构,可以提升给定数据集和机器学习任务的神经网络的性能。


这种方法大大缩短了网络训练时间。这些突变会改变网络结构,但不会改变网络的预测,网络的结构变化可能包括添加新的层、添加新连接或扩展内核或现有层。

 

640?wx_fmt=png

保留原函数的神经网络突变示例。右侧的体系结构是突变后的网络,但与左侧的体系结构具有相同的预测结果(由相同颜色表示)

 

实验评估:速度提升5万倍,错误率仅上升0.6%


实验中,研究人员将新神经进化方法与CIFAR-10和CIFAR-100数据集上的图像分类任务的其他几种方法进行了比较。这些数据集通常用于训练机器学习和计算机视觉算法的图像集。

 

与最先进的人工设计架构、基于强化学习的架构搜索方法、以及基于进化算法的其他自动化方法的结果相比,结构突变算法在分类错误上稍高出前几种方法,但耗时要少得多,比其他方法快了50000倍,错误率最多仅比基准数据集CIFAR-10上的最有力竞争对手高出0.6%。

 

下图所示为算法的优化过程。在图2中,每个点代表不同的结构,连接线代表突变。不同颜色所示为每个结构的精度,x轴表示时间。可以看到,准确率在前10个小时内迅速上升,之后缓慢上升、最后趋于稳定。

 

深度学习网络设计的进化算法优化


640?wx_fmt=png

图示为随时间推移,进化算法的优化过程


下图所示为随着时间的推移,深度学习网络结构的演变情况。


640?wx_fmt=png

网络结构随时间的演变,图中某些中间状态未显示

 

实际上,自动算法选择并不新鲜。谷歌在智能手机面部识别和目标检测上也在使用这类方法,如果IBM这一的系统性能确实如其所言,它可能代表着该领域内的一次重大进步。

 

将来,研究人员希望将这种优化集成到IBM的云服务中,并将其提供给客户。此外还计划将其扩展到更大的数据集上,如ImageNet和其他类型的数据,如时间序列和文本、自然语言处理任务等。

 

Wistuba将于9月在爱尔兰都柏林举行的欧洲机器学习和数据库知识发现会议(ECML-PKDD)会议上介绍这种方法。


参考链接:

https://venturebeat.com/2018/09/04/ibms-new-system-automatically-selects-the-optimal-ai-algorithm/

https://www.ibm.com/blogs/research/2018/09/ai-design-deep-learning/

640?wx_fmt=gif

640?wx_fmt=jpeg


点击下方“阅读原文”了解【人工智能服务器】 ↓↓↓

这篇关于神经网络突变自动选择AI优化算法,速度提升50000倍!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898075

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX