2024年第十七届 认证杯 网络挑战赛 (B题)| 神经外科手术的定位与导航 | 有限元方法 泊松分布 |数学建模完整代码+建模过程全解全析

本文主要是介绍2024年第十七届 认证杯 网络挑战赛 (B题)| 神经外科手术的定位与导航 | 有限元方法 泊松分布 |数学建模完整代码+建模过程全解全析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。

让我们来看看认证杯 网络挑战赛 (B题)

CS团队倾注了大量时间和心血,深入挖掘解决方案。通过有限元方法、泊松分布等算法,设计了明晰的项目,耗费时间确保可行性。为客户选择了最适项目,以数据支持、文献分析和可视化手段深刻展示思路。这综合团队努力体现在每个步骤,确保方案既创新又可行,为大家提供了全面而深入的洞见噢~
完整内容可以在文章末尾领取!

在这里插入图片描述

问题一: 在术中可以测得颅内压的情况下,根据已有数据计算全脑在开颅后的变形情况。

首先,我们可以将颅腔的三维形状和手术部位的位置作为初始条件,利用有限元分析方法建立一个三维颅脑模型。然后,根据颅内压和颅骨窗口的大小和位置,我们可以在模型中施加一定的压力和约束条件,模拟开颅后脑组织的变形情况。

接着,我们可以利用生物力学理论,将脑组织视为一种可塑性材料,根据其力学特性和受力情况,建立相应的数学模型。通过对模型进行求解,可以得到开颅后脑组织的变形情况,包括膨出高度和位置改变等。

最后,我们可以利用术前测量得到的其他生理指标,如脑组织的弹性模量和剪切模量等,来进一步优化模型,提高预测精度。

综上所述,我们可以通过建立三维颅脑模型,并结合生物力学理论和其他生理指标,来预测开颅后脑组织的变形情况。这样的数学模型可以为神经外科手术提供重要的辅助信息,帮助医生制定更加精准的手术方案,从而最大程度地减小手术对脑组织的损伤。

根据已有数据,我们可以建立如下数学模型来计算全脑在开颅后的变形情况:

首先,我们假设颅内压对脑组织的变形具有线性影响,即颅内压越高,脑组织的变形越大。同时,我们假设颅内压对脑组织的变形具有均匀的影响,即在开颅后,脑组织的变形在整个颅腔内是均匀的。

根据这些假设,我们可以得到如下数学公式:

设颅内压为P,颅内压对脑组织的变形影响系数为k,开颅后脑组织的变形高度为h,则有:

h = k P h = kP h=kP

其中,k为一个常数,代表颅内压对脑组织变形的影响程度。

根据已有数据,我们可以计算出颅内压P,开颅后脑组织的变形高度h,以及开颅窗口的大小和位置,从而可以计算出k的值。

接下来,我们需要考虑颅腔的三维形状和手术部位在三维空间中的位置。我们可以将颅腔分为若干个小的立方体单元,每个单元的大小可以根据颅腔的实际形状来确定。然后,我们可以根据颅腔的三维形状和手术部位的位置,确定每个单元的初始位置和变形后的位置。最后,我们可以根据每个单元的初始位置和变形后的位置,计算出每个单元的变形高度,从而得到整个颅腔的变形情况。

综上所述,我们可以建立如下数学模型来计算全脑在开颅后的变形情况:

设颅内压为P,颅内压对脑组织的变形影响系数为k,开颅后脑组织的变形高度为h,颅腔被分为N个立方体单元,每个单元的初始位置为x,变形后的位置为x’,则有:

h ( x ) = k P h(x) = kP h(x)=kP

其中,k为一个常数,代表颅内压对脑组织变形的影响程度。

x ′ = x + h ( x ) x' = x + h(x) x=x+h(x)

其中,x为每个单元的初始位置,x’为变形后的位置。

最后,我们可以根据每个单元的变形高度h(x),计算出整个颅腔的变形情况。

h ( x ) = k P \begin{equation} h(x) = kP \end{equation} h(x)=kP

x ′ = x + h ( x ) \begin{equation} x' = x + h(x) \end{equation} x=x+h(x)
其中,k为常数,P为颅内压,x为单元的初始位置,x’为变形后的位置。

# 导入需要的库
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 定义函数,计算脑组织的变形情况
def brain_deformation(pressure, window_size, window_position, brain_bulge):# 计算脑组织的变形情况deformation = pressure * window_size * window_position / brain_bulgereturn deformation# 定义函数,绘制脑组织的变形情况
def plot_brain_deformation(deformation):# 生成网格点x = np.linspace(0, 10, 100)y = np.linspace(0, 10, 100)X, Y = np.meshgrid(x, y)# 计算变形情况Z = deformation * np.sin(X) * np.cos(Y)# 绘制三维图像fig = plt.figure()ax = Axes3D(fig)ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')plt.show()# 调用函数,计算并绘制脑组织的变形情况
deformation = brain_deformation(10, 5, 2, 0.5)
plot_brain_deformation(deformation)

根据已有数据,我们可以计算出脑组织的变形情况。首先,我们需要根据术前的CT成像结果,确定颅腔的三维形状以及手术部位在三维空间中的位置。然后,根据术前的颅内压,以及在颅骨上打开的窗口的大小和位置,我们可以计算出脑组织的膨出高度。最后,将这些数据带入我们定义的函数中,就可以得到脑组织的变形情况。通过绘制三维图像,我们可以直观地观察到脑组织的变形情况。

在这里插入图片描述

第二个问题:在术中无法测得颅内压的情况下,如何根据我们能够取得的数据,尽可能精细地计算全脑在开颅后的变形情况。

首先,我们可以利用术前的 CT 成像结果,结合颅腔的三维形状和手术部位在三维空间中的位置,建立一个颅腔模型。在这个模型中,我们可以将颅腔分为多个小区域,每个小区域的形状和大小可以根据 CT 成像结果进行调整。然后,我们可以根据术前的颅内压和其他生理指标,建立一个颅内压模型。这个模型可以根据颅内压的大小和分布情况,预测在开颅后脑组织的变形情况。

接着,我们可以利用术前测得的颅内压和颅内压模型,结合开颅后在颅骨窗口处可观察到的脑组织膨出高度,建立一个脑组织变形模型。这个模型可以根据颅内压的大小和分布情况,预测在开颅后脑组织的变形情况。同时,我们还可以根据开颅后在颅骨窗口处可观察到的脑组织膨出高度,结合术前的颅内压和其他生理指标,对脑组织变形模型进行修正,以提高模型的精度。

最后,我们可以将颅腔模型和脑组织变形模型结合起来,建立一个整体的数学模型。这个模型可以根据术前的CT成像结果、颅内压和其他生理指标,预测在开颅后脑组织的变形情况。同时,我们还可以根据开颅后在颅骨窗口处可观察到的脑组织膨出高度,对整体模型进行修正,以提高模型的精度。

综上所述,我们可以建立一个整体的数学模型,通过结合颅腔模型、颅内压模型和脑组织变形模型,预测在开颅后脑组织的变形情况。这个模型可以根据我们能够取得的数据,尽可能精细地计算全脑在开颅后的变形情况。

为了解决这个问题,我们可以建立一个数学模型来预测开颅后脑组织的变形情况。首先,我们可以假设脑组织是一个弹性体,受到外力作用后会发生变形。然后,我们可以利用有限元方法来建立一个三维模型,将脑组织分割成小的单元,每个单元都有一定的弹性特性。接下来,我们可以根据术前的CT成像结果,将颅腔的三维形状和手术部位的位置导入模型中。然后,我们可以根据窗口的大小和位置,确定哪些单元会受到牵拉和移位的影响。最后,我们可以根据术前的颅内压和其他生理指标,来确定每个单元受到的外力大小。通过这样的方法,我们可以得到开颅后脑组织的变形情况。

数学公式如下:

  1. 假设脑组织是一个弹性体,受到外力作用后会发生变形,可以用弹性模量E来描述:
    σ = E ε \sigma = E\varepsilon σ=
    其中, σ \sigma σ为应力, ε \varepsilon ε为应变。
  2. 利用有限元方法,将脑组织分割成小的单元,每个单元都有一定的弹性特性,可以用单元刚度矩阵 K K K来表示:
    K = E 1 − ν 2 [ 1 ν ν 0 0 0 ν 1 ν 0 0 0 ν ν 1 0 0 0 0 0 0 1 − ν 2 0 0 0 0 0 0 1 − ν 2 0 0 0 0 0 0 1 − ν 2 ] K = \frac{E}{1-\nu^2}\begin{bmatrix} 1 & \nu & \nu & 0 & 0 & 0\\ \nu & 1 & \nu & 0 & 0 & 0\\ \nu & \nu & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1-\nu}{2} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1-\nu}{2} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} K=1ν2E 1νν000ν1ν000νν100000021ν00000021ν00000021ν
    其中, ν \nu ν为泊松比。
  3. 根据术前的CT成像结果,将颅腔的三维形状和手术部位的位置导入模型中,可以得到每个单元的初始位置和术中受到的牵拉和移位的影响。
  4. 根据窗口的大小和位置,确定哪些单元会受到牵拉和移位的影响,可以得到受到影响的单元的刚度矩阵 K ′ K' K
  5. 根据术前的颅内压和其他生理指标,来确定每个单元受到的外力大小,可以得到外力向量 f f f
  6. 利用有限元方法,求解出每个单元的位移向量 u u u,即脑组织的变形情况。
  7. 根据位移向量 u u u,可以得到开颅后脑组织的变形情况。
    在这里插入图片描述
import numpy as np
import matplotlib.pyplot as plt# 读取CT成像数据
ct_data = np.loadtxt("ct_data.txt")# 定义颅腔的三维形状和手术部位的位置
skull_shape = ct_data[:, :, :, 0]
lesion_position = ct_data[:, :, :, 1]# 定义颅内压
intracranial_pressure = 15 # mmHg# 定义窗口大小和位置
window_size = 10 # mm
window_position = (50, 50) # (x, y) coordinates in mm# 计算脑组织膨出高度
brain_bulge = intracranial_pressure * window_size / (2 * skull_shape[window_position[0], window_position[1], 0])# 绘制脑组织膨出高度图
plt.imshow(brain_bulge, cmap='gray')
plt.colorbar()
plt.title("Brain Bulge Height (mm)")
plt.show()

更多内容具体可以看看我的下方名片!里面包含有认证杯一手资料与分析!
另外在赛中,我们也会陪大家一起解析认证杯的一些方向
关注 CS数模 团队,数模不迷路~

这篇关于2024年第十七届 认证杯 网络挑战赛 (B题)| 神经外科手术的定位与导航 | 有限元方法 泊松分布 |数学建模完整代码+建模过程全解全析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895478

相关文章

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与