【域适应】基于散度成分分析(SCA)的四分类任务典型方法实现

2024-04-11 21:20

本文主要是介绍【域适应】基于散度成分分析(SCA)的四分类任务典型方法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

SCA(scatter component analysis)是基于一种简单的几何测量,即分散,它在再现内核希尔伯特空间上进行操作。 SCA找到一种在最大化类的可分离性、最小化域之间的不匹配和最大化数据的可分离性之间进行权衡的表示;每一个都通过分散进行量化。 

参考论文:Shibboleth Authentication Request

工具

MATLAB

方法实现

SCA变换实现
function [test_accuracy, predicted_labels, Zs, Zt] = SCA(X_s_cell, Y_s_cell, X_t, Y_t, params)INPUT(params is optional):X_s_cell          - cell of (n_s*d) matrix, each matrix corresponds to the instance features of a source domainY_s_cell          - cell of (n_s*1) matrix, each matrix corresponds to the instance labels of a source domainX_t               - (n_t*d) matrix, rows correspond to instances and columns correspond to featuresY_t               - (n_t*1) matrix, each row is the class label of corresponding instances in X_t[params]          - params.beta:      vector of validated values of betaparams.delta:     vector of validated values of deltaparams.k_list:    vector of validated dimension of the transformed spaceparams.X_v:       (n_v*d) matrix of instance features of validation set (use the source instances if not provided)params.Y_v:       (n_v*1) matrix of instance labels of validation set (use the source instances if not provided)params.verbose:   if true, show the validation accuracy of each parameter settingOUTPUT:test_accuracy     - test accuracy on target instancespredicted_labels  - predicted labels of target instancesZs                - projected source domain instancesZt                - projected target domain instancesShoubo Hu (shoubo.sub [at] gmail.com)
2019-06-02Reference
[1] Ghifary, M., Balduzzi, D., Kleijn, W. B., & Zhang, M. (2017). Scatter component analysis: A unified framework for domain adaptation and domain generalization. IEEE transactions on pattern analysis and machine intelligence, 39(7), 1414-1430.
%}if nargin < 4error('Error. \nOnly %d input arguments! At least 4 required', nargin);elseif nargin == 4% default params valuesbeta = [0.1 0.3 0.5 0.7 0.9];delta = [1e-3 1e-2 1e-1 1 1e1 1e2 1e3 1e4 1e5 1e6];k_list = [2];X_v = cat(1, X_s_cell{:});Y_v = cat(1, Y_s_cell{:});verbose = false;elseif nargin == 5if ~isfield(params, 'beta')beta = [0.1 0.3 0.5 0.7 0.9];elsebeta = params.beta;endif ~isfield(params, 'delta')delta = [1e-3 1e-2 1e-1 1 1e1 1e2 1e3 1e4 1e5 1e6];elsedelta = params.delta;endif ~isfield(params, 'k_list')k_list = [2];elsek_list = params.k_list;endif ~isfield(params, 'verbose')verbose = false;elseverbose = params.verbose;endif ~isfield(params, 'X_v')X_v = cat(1, X_s_cell{:});Y_v = cat(1, Y_s_cell{:});elseif ~isfield(params, 'Y_v')error('Error. Labels of validation set needed!');endX_v = params.X_v;Y_v = params.Y_v;endend% ----- training phase% ----- ----- source domainsX_s = cat(1, X_s_cell{:});Y_s = cat(1, Y_s_cell{:});fprintf('Number of source domains: %d, Number of classes: %d.\n', length(X_s_cell), length(unique(Y_s)) );fprintf('Validating hyper-parameters ...\n');dist_s_s = pdist2(X_s, X_s);dist_s_s = dist_s_s.^2;sgm_s = compute_width(dist_s_s);% ----- ----- validation setdist_s_v = pdist2(X_s, X_v);dist_s_v = dist_s_v.^2;sgm_v = compute_width(dist_s_s);n_s = size(X_s, 1);n_v = size(X_v, 1);H_s = eye(n_s) - ones(n_s)./n_s;H_v = eye(n_v) - ones(n_v)./n_v;K_s_s = exp(-dist_s_s./(2 * sgm_s * sgm_s));K_s_v = exp(-dist_s_v./(2 * sgm_v * sgm_v));K_s_v_bar = H_s * K_s_v * H_v;[P, T, D, Q, K_s_s_bar] = SCA_terms(K_s_s, X_s_cell, Y_s_cell);acc_mat = zeros(length(k_list), length(beta), length(delta));for i = 1:length(beta)cur_beta = beta(i);for j = 1:length(delta)cur_delta = delta(j);[B, A] = SCA_trans(P, T, D, Q, K_s_s_bar, cur_beta, cur_delta, 1e-5);for k = 1:length(k_list)[acc, ~, ~, ~] = SCA_test(B, A, K_s_s_bar, K_s_v_bar, Y_s, Y_v, k_list( k ) );acc_mat(k, i, j) = acc;if verbosefprintf('beta: %f, delta: %f, acc: %f\n', cur_beta, cur_delta, acc);endendendendfprintf('Validation done! Classifying the target domain instances ...\n');% ----- test phase% ----- ----- get optimal parametersacc_tr_best = max( acc_mat(:) );ind = find( acc_mat == acc_tr_best );[k, i, j] = size( acc_mat );[best_k, best_i, best_j] = ind2sub([k, i, j], ind(1));best_beta = beta(best_i);best_delta = delta(best_j);best_k = k_list(best_k);% ----- ----- test on the target domaindist_s_t = pdist2(X_s, X_t);dist_s_t = dist_s_t.^2;sgm = compute_width(dist_s_t);K_s_t = exp(-dist_s_t./(2 * sgm * sgm));n_s = size(X_s, 1);H_s = eye(n_s) - ones(n_s)./n_s;n_t = size(X_t, 1);H_t = eye(n_t) - ones(n_t)./n_t;K_s_t_bar = H_s * K_s_t * H_t;[B, A] = SCA_trans(P, T, D, Q, K_s_s_bar, best_beta, best_delta, 1e-5);[test_accuracy, predicted_labels, Zs, Zt] = SCA_test(B, A, K_s_s_bar, K_s_t_bar, Y_s, Y_t, best_k );fprintf('Test accuracy: %f\n', test_accuracy);end
基于SCA的域迁移分类实现
clear all
clcaddpath('./modules');
load('./syn_data/data.mat');% ----- parameters
% target / all / source domains
tgt_dm = [5];
val_dm = [3 4];
src_dm = [1 2];data_cell = XY_cell;
X_t = data_cell{tgt_dm(1)}(:, 1:2);
Y_t = data_cell{tgt_dm(1)}(:, 3);% ----- training data
X_s_cell = cell(1,length(src_dm));
Y_s_cell = cell(1,length(src_dm));    
for idx = 1:length(src_dm)cu_dm = src_dm(1, idx);X_s_cell{idx} = data_cell{cu_dm}(:, 1:2);Y_s_cell{idx} = data_cell{cu_dm}(:, 3);
end
% ----- validation data
X_v = [];
Y_v = [];
for idx = 1:length(val_dm)cu_dm = val_dm(1, idx);X_v = [X_v; data_cell{cu_dm}(:, 1:2)];Y_v = [Y_v; data_cell{cu_dm}(:, 3)];
endparams.X_v = X_v;
params.Y_v = Y_v;
params.verbose = true;
[test_accuracy, predicted_labels, Zs, Zt] = SCA(X_s_cell, Y_s_cell, X_t, Y_t, params);

代码获取

相关问题和代码开发,可后台私信沟通交流。

这篇关于【域适应】基于散度成分分析(SCA)的四分类任务典型方法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895216

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同