【图像融合】基于matlab GUI小波变换可见光与红外光图像融合(带面板)【含Matlab源码 701期】

本文主要是介绍【图像融合】基于matlab GUI小波变换可见光与红外光图像融合(带面板)【含Matlab源码 701期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、小波变换彩色图像融合简介

0 引言
目前在各种图像采集与分析系统中已大量使用彩色CCD数码相机, 但是由于其视野有限, 常常获得的只是局部图像, 如果要保证一定的分辨率的前提下采集整体彩色图像, 只能先拍摄具有重叠部分的局部彩色图像, 随后对其进行手工或自动拼接的方法来达到目的。该技术在机器视觉、遥感、虚拟现实、医学图像处理等领域有着广泛的应用。

图像融合包括图像配准和彩色图像融合。目前图像处理软件中比如Photoshop等提供了丰富的处理功能, 以交互方式通过剪切、模糊等操作进行图像拼接, 但由于完全是手工操作, 效率较低且精度不高。然而融合过程完全由计算机自动处理也会遇到难点, 比如进行图像配准的几何变换参数需根据控制点来计算, 所以控制点的准确性对最终配准的精确度会有很大的影响。在人工交互方式下, 控制点是由操作人员仔细观察两幅图像重叠区域的特征而选取出来的, 可信度高, 保证了图像配准的精度, 因此人工交互与计算机自动处理是相辅相成的。图像配准后, 由于当空间三维场景被投影为二维图像时, 场影中的诸多变化因素, 如光照条件、景物遮挡、噪声干扰、景物几何形变和畸变、表面物理特性以及照相机特性等, 都被综合到图像色彩值中, 因此对应同一场景的重叠图像必然存在一定差异。彩色图像融合后, 过渡区的自然平滑是关键。

一种基于小波变换的彩色图像融合算法, 基本步骤是:交互式地在局部图像的重叠部份选取足够多的控制点[1] ―→指定几何变形的类型―→将两幅局部图像变换到同一坐标空间―→色彩空间转换―→小波变换―→对色彩的各分量进行融合―→小波逆变换―→色彩空间转换―→融合图像。考虑到Matlab具有强大、便捷的计算功能, 特别是其丰富的工具箱函数[1], 能极大地提高开发效率, 本文使用Matlab自带的工具箱函数对算法进行了仿真, 由实验可以看出在Matlab这个平台上通过少量编程即可实现复杂算法。

2 基于小波变换的图像融合方法
图像配准之后, 由于局部图像重叠区域之间差异的存在, 如果将图像像素简单叠加, 拼接处就会出现明显的拼接缝。传统的融合方法多是在空间域处理, 没有考虑相应频率域的变化。小波分析具有优良的时频局部性能, 它对信号用一组尺度不同的带通滤波器进行滤波[2], 将信号分解为不同频带进行处理, 能把信号进行多分辨分析, 表达了图像在不同分辨率下的特征, 很适合于图像融合。

设二维尺度函数Φ (x, y) 是可分离的, 相应的尺度函数为Φ (x) , 小波函数为ψ (x) , 即:
Φ (x, y) =Φ (x) Φ (y) (7)
则可构造3个二维基本小函数:
ψ1 (x, y) =Φ (x) ψ (y) (8)
ψ2 (x, y) =ψ (x) Φ (y) (9)
ψ3 (x, y) =ψ (x) ψ (y) (10)
二维小波基可以通过以下伸缩平移实现:

Ψjj,m,n=2-jΨi (2-jx-m, 2-jy-n) (11)
其中j, m, n∈Z, i=1, 2, 3。这样二维图像信号f (x, y) 在尺度2j下的平滑分量 (低频分量) 可用二维序列Dj (m, n) 表示为
Dj (m, n) =<f (x, y) , ϕj, m, n (x, y) > (12)
细节成分表示为:
C1j (m, n) =<f (x, y) , Ψ1j,m,n (x, y) > (13)
C2j (m, n) =<f (x, y) , Ψ2j,m,n (x, y) > (14)
C3j (m, n) =<f (x, y) , Ψ3j,m,n (x, y) > (15)
局部图像的重叠区域经过一层二维Mallat算法将得到各自的四个子带图像:LL、LH、HL、HH。图2为基于小波变换的图像融合框图, 首先对重叠区某一色彩分量进行三层小波分解, 然后对色彩不同分量采用不同的融合算法得融合后的系数, 经小波逆变换得融合图像的某一色彩分量。matlab对小波分析提供了全面的支持, 允许用户以图形界面或者命令行形式直接调用小波工具箱函数。例如:idwt2 (dwt2 (image, ‘db2’) , ‘db2’) , 这一行程序先调用dwt2函数对图像image以db2小波进行一层小波变换, 再调用idwt2函数进行小波逆变换, 结果又得到了图像image, matlab的快捷方便可见一斑。
在这里插入图片描述
图2 基于小波变换的图像融合框图

⛄二、部分源代码

function varargout = main(varargin)
% MAIN MATLAB code for main.fig
% MAIN, by itself, creates a new MAIN or raises the existing
% singleton*.
%
% H = MAIN returns the handle to a new MAIN or the handle to
% the existing singleton*.
%
% MAIN(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in MAIN.M with the given input arguments.
%
% MAIN(‘Property’,‘Value’,…) creates a new MAIN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before main_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to main_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help main

% Last Modified by GUIDE v2.5 14-Dec-2017 19:28:26

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @main_OpeningFcn, …
‘gui_OutputFcn’, @main_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to main (see VARARGIN)

% Choose default command line output for main
handles.output = hObject;
handles.imfusion1=[];
handles.imfusion2=[];
axis(handles.axes1,‘off’);
axis(handles.axes2,‘off’);
axis(handles.axes3,‘off’)
movegui(handles.figure1,‘center’);
% Update handles structure
guidata(hObject, handles);
uiwait(handles.figure1);

% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
img =handles.imfusion1;
% img = rgb2gray(img);
% img = img(20:160,140:280);
nn=10;
img=imresize(img,[58nn 77nn]);

img2 =handles.imfusion2;
% img2 = rgb2gray(img2);
% img2 = img2(20:160,140:280);
img2=imresize(img2,[58nn 77nn]);
[RcA1,RcH1,RcV1,RcD1] = dwt2(img,‘sym4’);%LL1,HL1,LH1,HH1
[VcA1,VcH1,VcV1,VcD1] = dwt2(img2,‘sym4’);%LL1,HL1,LH1,HH1
[RcA2,RcH2,RcV2,RcD2] = dwt2(RcA1,‘sym4’);%LL1,HL1,LH1,HH1
[VcA2,VcH2,VcV2,VcD2] = dwt2(VcA1,‘sym4’);%LL1,HL1,LH1,HH1
%%%%%% 2级小波融合
%%%%%% 策略1: 低频平均;高频模值较大者
[M1,N1,P1] = size(RcA1);
[M2,N2,P2] = size(RcA2);
%%%%%%1级
cA10 = (RcA1 + VcA1)*0.5;
for i=1:M1
for j=1:N1
for k=1:3
if abs(RcH1(i,j,k)) > abs(VcH1(i,j,k))
cH10(i,j,k) = RcH1(i,j,k);
else
cH10(i,j,k) = VcH1(i,j,k);
end
if abs(RcV1(i,j,k)) > abs(VcV1(i,j,k))
cV10(i,j,k) = RcV1(i,j,k);
else
cV10(i,j,k) = VcV1(i,j,k);
end
if abs(RcD1(i,j,k)) > abs(VcD1(i,j,k))
cD10(i,j,k) = RcD1(i,j,k);
else
cD10(i,j,k) = VcD1(i,j,k);
end
end
end
end
%%%%%%%2级
cA20 = (RcA2 + VcA2)*0.5;
for i=1:M2
for j=1:N2
for k=1:3
if abs(RcH2(i,j,k)) > abs(VcH2(i,j,k))
cH20(i,j,k) = RcH2(i,j,k);
else
cH20(i,j,k) = VcH2(i,j,k);
end
if abs(RcV2(i,j,k)) > abs(VcV2(i,j,k))
cV20(i,j,k) = RcV2(i,j,k);

          cD20(i,j,k) = RcD2(i,j,k);      elsecD20(i,j,k) = VcD2(i,j,k); end        end
end

end
%%%%%%反变换
img_fuse2 = idwt2(cA20,cH20,cV20,cD20,‘sym4’);%LL1,HL1,LH1,HH1
img_fuse2 = img_fuse2(1:M1,1:N1,1:3);
img_fuse0 = idwt2(img_fuse2,cH10,cV10,cD10,‘sym4’);
for k=1:3
% a=max(max(img_fuse0(:,:,k)));
% b=min(min(img_fuse0(:,:,k)));
% img_fuse0(:,:,k)=1/(b-a)*img_fuse0(:,:,k)-(1/(b-a)*a);

imshow(img_fuse0);
guidata(hObject, handles);

% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[FileName, FilePath]=uigetfile(‘.tif;.jpg;.png;.img;.gif;.bmp;’,‘请选择图像数据’);
str=[FilePath FileName];
image_1=imread(str);
handles.imfusion1=image_1;
axes(handles.axes1);
imshow(image_1);
[FileName, FilePath]=uigetfile(‘.tif;.jpg;.png;.img;.gif;.bmp;’,‘请选择图像数据’);
str=[FilePath FileName];
image_1=imread(str);
handles.imfusion2=image_1;
axes(handles.axes2);
imshow(image_1);
guidata(hObject, handles);

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]]汪强,尹峰,刘钢钦.基于小波的彩色图像融合技术[M].计算机仿真. 2005,(11)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【图像融合】基于matlab GUI小波变换可见光与红外光图像融合(带面板)【含Matlab源码 701期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893489

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。