【AcWing】蓝桥杯集训每日一题Day22|区间DP|博弈论|1388.游戏(C++)

本文主要是介绍【AcWing】蓝桥杯集训每日一题Day22|区间DP|博弈论|1388.游戏(C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1388.游戏
1388. 游戏 - AcWing题库
难度:中等
时/空限制:1s / 64MB
总通过数:1429
总尝试数:1925
来源:

usaco training 3.3
算法标签

博弈论DP区间DP

题目内容

玩家一和玩家二共同玩一个小游戏。
给定一个包含 N 个正整数的序列。
由玩家一开始,双方交替行动。
每次行动可以在数列的两端之中任选一个数字将其取走,并给自己增加相应数字的分数。(双方的初始分都是 0 分)
当所有数字都被取完时,游戏结束。
分更高的一方获胜。
请计算,如果双方都采取最优策略进行游戏,则游戏结束时,双方的得分各是多少。

输入格式

第一行包含整数 N。
后面若干行包含 N 个整数,表示这个序列。注意每行不一定恰好包含一个数。

输出格式

共一行,两个整数,分别表示玩家一和玩家二的最终得分。

数据范围

2≤N≤100,
数列中的数字的取值范围为 [1,200]

输入样例:
6
4 7 2 9
5 2
输出样例:
18 11
题目解析

方案可能不唯一,分值是一样的,每个人都希望分值最高,都绝顶聪明,最终每个人的分值是唯一确定的
每一个选法得到的分值都是唯一确定的

N最大是100
序列中每一个数的最大值是200

博弈论

每一次有两种选择,是选左边的还是右边的呢,左边的就是 w l w_{l} wl,右边的是 w r w_{r} wr
要看条件和目标,目标是要分值尽可能高,由于所有数的总和是一定的
就是一个零和游戏
一方的分值越高,另一方的分值就越低
等价于,一方的分值减去另一方的分值最大,也就是差值最大

就是看选左边的话,差值A-B的最大值是多少,选右边的话,差值的最大值又是多少
两者要取一个max

  • 比如选左边的话,剩下的问题就变成了从L+1到R的一个子问题,一个递归的问题
    该对手选了,对于对手来说,B-A差值最大是多少,可以求一下,如 S B − A S_{B-A} SBA
    我们减对方的分值就是 − S B − A -S_{B-A} SBA再加上当前选择的分值L
    因此选左边的话,我们的分值就是 W L − S B − A W_{L}-S_{B-A} WLSBA
  • 同理,如果选右边的话,就变成了一个L到R-1的一个子问题
    最终的分值就是 W R − S B − A W_{R}-S_{B-A} WRSBA
  • 两者取一个最大值,就是当前的最大值
博弈论的核心

每次有多种选择,每次选完之后,一定要让最坏情况下最好,也就是我们选完之后,对方一定会选择对他来说最好的情况

在做的时候会发现会产生很多的子问题
可以用一个DP数组,把每一个子问题存起来,比如 S B − A S_{B-A} SBA
相当于对这个核心策略进行记忆化,就可以形成一个DP

f[L][R]
对于当前LR这个区间,先手分值减后手分值的最大值
f ( L , R ) = m a x ( W L − f ( L + 1 , R ) , W R − f ( L , R − 1 ) ) f(L,R)=max(W_{L}-f(L+1,R),W_{R}-f(L,R-1)) f(L,R)=max(WLf(L+1,R),WRf(L,R1))
用DP的方式求一下就可以了
是一个区间DP

有一个模板写法
为了保证可以按照拓扑的顺序计算每个状态,要保证每个状态所依赖的状态先被算出来
比如要算f[L][R]的话,要先把f[L+1][R]f[L][R-1]算出来
区间DP一般第一维循环,先去枚举长度,长度长的一定是依赖长度短的,因此按照长度从小到大枚举每个区间,就一定可以保证在算每个状态的时候它所依赖的状态都算出来了

时间复杂度是 O ( n 2 ) O(n^2) O(n2)

代码
#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 110;int n;
int w[N];
int f[N][N];int main()
{scanf("%d", &n);//读入n个数for (int i = 0; i < n; i ++) scanf("%d", &w[i]);//区间DP//第一维先枚举长度for (int len = 1; len <= n; len ++)//第二维枚举左端点for (int i = 0; i + len - 1 < n; i ++){int j = i + len - 1;f[i][j] = max(w[i] - f[i + 1][j], w[j] - f[i][j - 1]);}//计算总和int sum = 0;for (int i = 0; i < n; i ++) sum += w[i];//计算A-B的差值int d = f[0][n - 1];//A+B=sum,A-B=d,求A和Bprintf("%d %d", (sum + d) / 2, (sum - d) / 2);return 0;
}

这篇关于【AcWing】蓝桥杯集训每日一题Day22|区间DP|博弈论|1388.游戏(C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893479

相关文章

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�