本文主要是介绍【表盘识别】基于matlab Hough变换指针式仪表识别(倾斜矫正)【含Matlab源码 1058期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、Hough变换简介
霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,它通过一种投票算法检测具有特定形状的物体。该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果。霍夫变换于1962年由Paul Hough 首次提出[53],后于1972年由Richard Duda和Peter Hart推广使用[54],经典霍夫变换用来检测图像中的直线,后来霍夫变换扩展到任意形状物体的识别,多为圆和椭圆。
霍夫变换运用两个坐标空间之间的变换将在一个空间中具有相同形状的曲线或直线映射到另一个坐标空间的一个点上形成峰值,从而把检测任意形状的问题转化为统计峰值问题,上一节中已经介绍了车道的直线特征,本节中介绍hough变换检测直线的原理和检测结果。
我们知道,一条直线在直角坐标系下可以用y=kx+b表示, 霍夫变换的主要思想是将该方程的参数和变量交换,即用x,y作为已知量k,b作为变量坐标,所以直角坐标系下的直线y=kx+b在参数空间表示为点(k,b),而一个点(x1,y1)在直角坐标系下表示为一条直线y1=x1·k+b,其中(k,b)是该直线上的任意点。为了计算方便,我们将参数空间的坐标表示为极坐标下的γ和θ。因为同一条直线上的点对应的(γ,θ)是相同的,因此可以先将图片进行边缘检测,然后对图像上每一个非零像素点,在参数坐标下变换为一条直线,那么在直角坐标下属于同一条直线的点便在参数空间形成多条直线并内交于一点。因此可用该原理进行直线检测。
如图 所示,对于原图内任一点(x,y)都可以在参数空间形成一条直线,以图中一条直线为例有参数(γ,θ)=(69.641,30°),所有属于同一条直线上的点会在参数空间交于一点,该点即为对应直线的参数。由该图中所有直线所得到的(γ,θ)在参数空间中得到一系列对应曲线见图 霍夫统计变换结果。
⛄二、部分源代码
clear all;
close all;
clc;
img= imread(‘3.jpg’);
img= rgb2gray(img);
%% 归一化处理
figure(1);
imshow(mat2gray(img));
hold on;
[M, N] = size(img);
%% 倾斜校正与透视变换
dot=[120,40;401,73;69,309;339,395];
%取四个点,依次是左上,右上,左下,右下,这里我取的是四个角
plot(dot(:,1),dot(:,2),‘*’);title(‘经灰度化的原图及其倾斜校正特征点’);
w=round(sqrt((dot(1,1)-dot(2,1))2+(dot(1,2)-dot(2,2))2)); %从原四边形获得新矩形宽
h=round(sqrt((dot(1,1)-dot(3,1))2+(dot(1,2)-dot(3,2))2)); %从原四边形获得新矩形高 round 四舍五入取整
y=[dot(1,1) dot(2,1) dot(3,1) dot(4,1)]; %四个原顶点
x=[dot(1,2) dot(2,2) dot(3,2) dot(4,2)];
%这里是新的顶点,我取的矩形,也可以做成其他的形状
%大可以原图像是矩形,新图像是从dot中取得的点组成的任意四边形
Y=[dot(1,1) dot(1,1) dot(1,1)+h dot(1,1)+h];
X=[dot(1,2) dot(1,2)+w dot(1,2) dot(1,2)+w];
B=[X(1) Y(1) X(2) Y(2) X(3) Y(3) X(4) Y(4)]';
%变换后的四个顶点,方程右边的值
%联立解方程组,方程的系数
A=[x(1) y(1) 1 0 0 0 -X(1)*x(1) -X(1)*y(1);
0 0 0 x(1) y(1) 1 -Y(1)*x(1) -Y(1)*y(1);
x(2) y(2) 1 0 0 0 -X(2)*x(2) -X(2)*y(2);
0 0 0 x(2) y(2) 1 -Y(2)*x(2) -Y(2)*y(2);
x(3) y(3) 1 0 0 0 -X(3)*x(3) -X(3)*y(3);
0 0 0 x(3) y(3) 1 -Y(3)*x(3) -Y(3)*y(3);
x(4) y(4) 1 0 0 0 -X(4)*x(4) -X(4)*y(4);
0 0 0 x(4) y(4) 1 -Y(4)*x(4) -Y(4)*y(4)];
fa=inv(A)*B; %用四点求得的方程的解,也是全局变换系数 inv 求逆运算
a=fa(1);b=fa(2);c=fa(3);
d=fa(4);e=fa(5);f=fa(6);
g=fa(7);h=fa(8);
rot=[d e f;
a b c;
g h 1];
%公式中第一个数是x,Matlab第一个表示y,所以我矩阵1,2行互换了
pix1=rot*[1 1 1]‘/(g1+h1+1); %变换后图像左上点
pix2=rot*[1 N 1]’/(g1+hN+1); %变换后图像右上点
pix3=rot*[M 1 1]‘/(gM+h1+1); %变换后图像左下点
pix4=rot*[M N 1]’/(gM+hN+1); %变换后图像右下点
height=round(max([pix1(1) pix2(1) pix3(1) pix4(1)])-min([pix1(1) pix2(1) pix3(1) pix4(1)])); %变换后图像的高度
width=round(max([pix1(2) pix2(2) pix3(2) pix4(2)])-min([pix1(2) pix2(2) pix3(2) pix4(2)])); %变换后图像的宽度
imgn=zeros(height,width);
img_mask=zeros(height,width);
if min([pix1(1) pix2(1) pix3(1) pix4(1)]) >= 0
delta_y = -round(abs(min([pix1(1) pix2(1) pix3(1) pix4(1)])));
else
delta_y = round(abs(min([pix1(1) pix2(1) pix3(1) pix4(1)]))); %取得y方向的负轴超出的偏移量
end;
if min([pix1(2) pix2(2) pix3(2) pix4(2)]) >= 0
delta_x = -round(abs(min([pix1(2) pix2(2) pix3(2) pix4(2)])));
else
delta_x = round(abs(min([pix1(2) pix2(2) pix3(2) pix4(2)]))); %取得x方向的负轴超出的偏移量
end;
inv_rot=inv(rot);
for i = 1-delta_y:height-delta_y %从变换图像中反向寻找原图像的点,以免出现空洞,和旋转放大原理一样
for j = 1-delta_x:width-delta_x
pix=inv_rot*[i j 1]'; %求原图像中坐标,因为[YW XW W]=fa*[y x 1],所以这里求的是[YW XW W],W=gy+hx+1;
pix=inv([gpix(1)-1 hpix(1);gpix(2) hpix(2)-1])[-pix(1) -pix(2)]'; %相当于解[pix(1)(gy+hx+1) pix(2)*(gy+hx+1)]=[y x],这样一个方程,求y和x,最后pix=[y x];
if pix(1)>=0.5 && pix(2)>=0.5 && pix(1)<=M && pix(2)<=Nimgn(i+delta_y,j+delta_x)=img(round(pix(1)),round(pix(2))); %最邻近插值,也可以用双线性或双立方插值img_mask(i+delta_y,j+delta_x)=1;end
end
end
%% 显示并以文件格式保存图像
figure(2);imshow(uint8(imgn));title(‘倾斜校正后的图像’);
print(gcf,‘-djpeg’,‘abc.jpeg’);
hold on;
%% 霍夫变换,同基础算法,清除相关变量
clearvars -except imgn img_mask
I = uint8(imgn);
hgram = 225: -1 :15;
I = histeq(I, hgram);
figure(3), imshow(I, []); title(‘直方图规定化’);
hold on;
rotI= medfilt2(I,[3 3]); %3x3矩阵的中值滤波
figure(4), imshow(rotI, []); title(‘中值滤波’);
hold on ;
%% 边缘检测
BW0 = edge(rotI,‘canny’,0.8);
figure(5), imshow(BW0);title(‘canny算子边缘检测’);
hold on ;
se1=strel(‘disk’,50); %创建一个半径为50的平坦型圆盘结构元素
img_mask = imerode(img_mask,se1);
BW = BW0&img_mask; %滤除边界
%% 霍夫变换检测直线
[H,T,R] = hough(BW);
figure(6),imshow(imadjust(mat2gray(H)),[],‘XData’,T,‘YData’,R,‘InitialMagnification’,‘fit’);
xlabel(‘\theta (degrees)’), ylabel(‘\rho’);
axis on, axis normal, hold on;
colormap(hot)
P = houghpeaks(H,5,‘threshold’,ceil(0.3*max(H(😃)));
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,‘s’,‘color’,‘black’);
lines = houghlines(BW,T,R,P,‘FillGap’,52,‘MinLength’,35);
figure(7), imshow(uint8(imgn)),title(‘霍夫变换提取的直线’); hold on
% 提取指针直线
for k = 1: length(lines)
xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),‘LineWidth’,2,‘Color’,‘green’);
% Plot beginnings and ends of lines
plot(xy(1,1),xy(1,2),‘x’,‘LineWidth’,2,‘Color’,‘yellow’);
plot(xy(2,1),xy(2,2),‘x’,‘LineWidth’,2,‘Color’,‘red’);
end
%% 读数
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]李凯南.基于Hough变换的指针式仪表的自动判读[J].现代电子技术. 2006,(14)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
这篇关于【表盘识别】基于matlab Hough变换指针式仪表识别(倾斜矫正)【含Matlab源码 1058期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!