【路径规划】基于六次多项式的多关节机器人避障路径规划

2024-04-10 09:28

本文主要是介绍【路径规划】基于六次多项式的多关节机器人避障路径规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  最近迷上了机械臂避障轨迹规划,因为之前一直做的都是无障碍物轨迹规划,所以这次想试一下有障碍物的,把避障算法用在我的SimMechanics机械臂上,看看效果咋样。以下定义不区分路径规划和轨迹规划。
  by the way,本文实现的是全局静态避障,而非局部动态避障 : )

0. 任务目标

  实现六关节机器人任务空间避障轨迹规划。

1. 思路分析

  本人之前尝试过使用采样算法RRT来进行三维路径的避障和寻优,不过感觉步骤比较繁琐,而且很多文章都是到三次B样条曲线拟合完路径就结束了,最后也没说怎么保证末端执行器的速度、加速度平滑和各个关节运动的运动平滑。
  鉴于此,本人放弃基于笛卡尔空间的避障轨迹规划,改做基于关节空间的避障轨迹规划。此方法相比于前个方法来说更加简便且不存在上述问题。

  基于关节空间轨迹规划需要考虑的有:

  • 碰撞检测
  • 轨迹规划
  • 遗传优化

2. 碰撞检测

  多关节机器人碰撞检测和移动机器人不一样,其不仅需要考虑末端执行器的避障而且还需要考虑中间连杆的避障,这里采用包围盒的思想,将连杆视为圆柱体,将障碍物视为球体。

  进一步地,根据多关节机器人的运动特性,其碰撞检测可以转化为由障碍物圆心到三个部分连杆中心线的距离d1、d2、d3。当d小于安全距离时即认为发生碰撞。

3. 轨迹规划

  当确定关节始末角度、速度、加速度边界条件时,五次多项式关节空间轨迹规划只能确定出一条唯一的运动曲线,所以这里采用六次多项式来进行关节轨迹规划

θ t = c 0 + c 1 t + c 2 t 2 + c 3 t 3 + c 4 t 4 + c 5 t 5 + K t 6 \boldsymbol{\theta }_t=\boldsymbol{c}_0+\boldsymbol{c}_1t+\boldsymbol{c}_2t^2+\boldsymbol{c}_3t^3+\boldsymbol{c}_4t^4+\boldsymbol{c}_5t^5+\boldsymbol{K}t^6 θt=c0+c1t+c2t2+c3t3+c4t4+c5t5+Kt6其中, θ = [ θ 1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 ] \boldsymbol{\theta }=\left[ \theta _1, \theta _2, \theta _3, \theta _4, \theta _5, \theta _6 \right] θ=[θ1,θ2,θ3,θ4,θ5,θ6],代表机械臂的六个关节角, K \boldsymbol{K} K 为可调参数, K = [ K 1 , K 2 , K 3 , K 4 , K 5 , K 6 ] \boldsymbol{K}=\left[ K_1, K_2, K_3, K_4, K_5, K_6 \right] K=[K1,K2,K3,K4,K5,K6],通过改变系数K即可改变关节运动轨迹。六次多项式依然能保证各关节角度、角速度、角加速度的连续平稳运动。

4. 遗传优化

  现在的问题在于,如何能找到比较合适的K值,使得正运动学后的机器人末端执行器和连杆运动能够绕过障碍物,比较不错的方法是采用遗传算法,通过迭代找到最优值。为了方便,这里就采用我之前用过的JADE差分算法来进行寻优。
  适应度函数的确定:遗传优化的目的是在机械臂全局避障的同时,减少不必要的运动,所以适应度函数分为三部分:碰撞检测结果 f c o f_{co} fco、六个关节的角度变化总和 f θ f_{\theta} fθ、末端执行器的运动轨迹长度 f L f_L fL。进而则有 f K = − f c o η 1 f θ + η 2 f L f_K=-\frac{f_{co}}{\eta _1f_{\theta}+\eta _2f_L} fK=η1fθ+η2fLfco  基于此,可在关节空间中规划出一条无碰撞,同时运动学、轨迹长度、关节转动角度一起协同优化的理想运动轨迹。

5. 仿真验证

  将多关节机器人初始位置设在零位q=[0,0,0,0,0,0]rad,此时末端执行器初始位置为T=[0.8201, 0.0391, 0.9483]m,将末端执行器终点位置设为X移动-0.1m,Y移动+0.4m,Z移动-0.4m,即[0.7201, 0.4391, 0.5483]m,通过逆解即可求得末端终点位置对应的各关节角度。
  在机械臂的路径中设置球体障碍物,球体中心坐标设为[0.8, 0.2, 0.8]m,半径设为0.1m,六个关节的角速度、角加速度边界均设置为0。此外,设机械臂运行时间为5s,插值点个数为50,即每段插值点间的运行时间为0.1s。

仿真结果

  可以看出,机械臂在运动过程中发生了很明显的避让现象,为了更明显的观察,绘制出末端执行器的三维运动轨迹,红色为实际运动轨迹,虚线为无障碍物时的理想运动轨迹。

  由于各个关节的运动曲线为六次多项式,所以关节角速度、角加速度满足平滑条件,进一步的,绘制出末端执行器在XYZ方向分量上的速度、加速度曲线,可以看出,机械臂末端执行器的速度、加速度曲线均为连续平滑曲线,满足平稳运动的条件。

JADE寻优迭代图,在经过12次迭代后,迭代出了K的较优值和较小的适应度值。

6. 总结

  基于以上结论,成功的实现了多关节机器人避障路径规划,虽然没有找到一条最优路径,但已经找到了一条较优路径,且同时具备安全、稳定、高效的作用,有了以上的各个关节角度曲线,后续设计轨迹跟踪控制器即可完成机械臂高精度的轨迹跟踪。
  本次实验圆满完成 : )

这篇关于【路径规划】基于六次多项式的多关节机器人避障路径规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890676

相关文章

随想录 Day 69 并查集 107. 寻找存在的路径

随想录 Day 69 并查集 107. 寻找存在的路径 理论基础 int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好vector<int> father = vector<int> (n, 0); // C++里的一种数组结构// 并查集初始化void init() {for (int i = 0; i < n; ++i) {father[i] = i;}

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

SQL Server中,用Restore DataBase把数据库还原到指定的路径

restore database 数据库名 from disk='备份文件路径' with move '数据库文件名' to '数据库文件放置路径', move '日志文件名' to '日志文件存放置路径' Go 如: restore database EaseWe from disk='H:\EaseWe.bak' with move 'Ease

青龙面板2.9之Cdle傻妞机器人编译教程

看到有的朋友对傻妞机器人感兴趣,这里写一下傻妞机器人的编译教程。 第一步,这里以linux amd64为例,去官网下载安装go语言安装包: 第二步,输入下方指令 cd /usr/local && wget https://golang.google.cn/dl/go1.16.7.linux-amd64.tar.gz -O go1.16.7.linux-amd64.tar.gz

IPD推行成功的核心要素(十一)技术规划与平台规划促进公司战略成功

随着外部大环境的影响,各企业仅有良好的愿望是不够的。预测并顺应新兴市场和技术的变化,变危机为转机,不断推出强大的产品才是一个公司持续繁荣的根本保障。而高效的产品开发往往是基于某些关键技术,针对市场推出的一个或几个产品系列,这些产品系列通常共用一些产品平台,共用一种或者几种关键技术。当一家企业进入了平稳发展期,已经建立了较为完善的管理制度和产品开发流程,但是依然认为竞争对手是那样强大,那样不可战胜。

C# 命名管道中客户端访问服务器时,出现“对路径的访问被拒绝”

先还原一下我出现错误的情景:我用C#控制台写了一个命名管道服务器,然后用ASP.NET写了一个客户端访问服务器,运行之后出现了下面的错误: 原因:服务器端的访问权限不够,所以是服务器端的问题,需要增加访问权限。(网上很多都说是文件夹的权限不够,情况不同,不适用于我这种情况) 解决办法: (1)在服务器端相应地方添加以下代码。 PipeSecurity pse = new PipeSec

代码随想录算法训练营第三十九天|62.不同路径 63. 不同路径 II 343.整数拆分 96.不同的二叉搜索树

LeetCode 62.不同路径 题目链接:62.不同路径 踩坑:二维的vector数组需要初始化,否则会报错访问空指针 思路: 确定动态数组的含义:dp[i][j]:到达(i,j)有多少条路经递推公式:dp[i][j] = dp[i-1][j] + dp[i][j-1]初始化动态数组:dp[0][0] = 1遍历顺序:从左到右,从上到下 代码: class Solution {pu

鹅算法(GOOSE Algorithm,GOOSE)求解复杂城市地形下无人机避障三维航迹规划,可以修改障碍物及起始点(Matlab代码)

一、鹅算法 鹅优化算法(GOOSE Algorithm,GOOSE)从鹅的休息和觅食行为获得灵感,当鹅听到任何奇怪的声音或动作时,它们会发出响亮的声音来唤醒群中的个体,并保证它们的安全。 参考文献 [1]Hamad R K, Rashid T A. GOOSE algorithm: a powerful optimization tool for real-world engineering

自动驾驶规划中使用 OSQP 进行二次规划 代码原理详细解读

目录 1 问题描述 什么是稀疏矩阵 CSC 形式 QP Path Planning 问题 1. Cost function 1.1 The first term: 1.2 The second term: 1.3 The thrid term: 1.4 The forth term: 对 Qx''' 矩阵公式的验证 整体 Q 矩阵(就是 P 矩阵,二次项的权重矩阵)