【路径规划】基于六次多项式的多关节机器人避障路径规划

2024-04-10 09:28

本文主要是介绍【路径规划】基于六次多项式的多关节机器人避障路径规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  最近迷上了机械臂避障轨迹规划,因为之前一直做的都是无障碍物轨迹规划,所以这次想试一下有障碍物的,把避障算法用在我的SimMechanics机械臂上,看看效果咋样。以下定义不区分路径规划和轨迹规划。
  by the way,本文实现的是全局静态避障,而非局部动态避障 : )

0. 任务目标

  实现六关节机器人任务空间避障轨迹规划。

1. 思路分析

  本人之前尝试过使用采样算法RRT来进行三维路径的避障和寻优,不过感觉步骤比较繁琐,而且很多文章都是到三次B样条曲线拟合完路径就结束了,最后也没说怎么保证末端执行器的速度、加速度平滑和各个关节运动的运动平滑。
  鉴于此,本人放弃基于笛卡尔空间的避障轨迹规划,改做基于关节空间的避障轨迹规划。此方法相比于前个方法来说更加简便且不存在上述问题。

  基于关节空间轨迹规划需要考虑的有:

  • 碰撞检测
  • 轨迹规划
  • 遗传优化

2. 碰撞检测

  多关节机器人碰撞检测和移动机器人不一样,其不仅需要考虑末端执行器的避障而且还需要考虑中间连杆的避障,这里采用包围盒的思想,将连杆视为圆柱体,将障碍物视为球体。

  进一步地,根据多关节机器人的运动特性,其碰撞检测可以转化为由障碍物圆心到三个部分连杆中心线的距离d1、d2、d3。当d小于安全距离时即认为发生碰撞。

3. 轨迹规划

  当确定关节始末角度、速度、加速度边界条件时,五次多项式关节空间轨迹规划只能确定出一条唯一的运动曲线,所以这里采用六次多项式来进行关节轨迹规划

θ t = c 0 + c 1 t + c 2 t 2 + c 3 t 3 + c 4 t 4 + c 5 t 5 + K t 6 \boldsymbol{\theta }_t=\boldsymbol{c}_0+\boldsymbol{c}_1t+\boldsymbol{c}_2t^2+\boldsymbol{c}_3t^3+\boldsymbol{c}_4t^4+\boldsymbol{c}_5t^5+\boldsymbol{K}t^6 θt=c0+c1t+c2t2+c3t3+c4t4+c5t5+Kt6其中, θ = [ θ 1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 ] \boldsymbol{\theta }=\left[ \theta _1, \theta _2, \theta _3, \theta _4, \theta _5, \theta _6 \right] θ=[θ1,θ2,θ3,θ4,θ5,θ6],代表机械臂的六个关节角, K \boldsymbol{K} K 为可调参数, K = [ K 1 , K 2 , K 3 , K 4 , K 5 , K 6 ] \boldsymbol{K}=\left[ K_1, K_2, K_3, K_4, K_5, K_6 \right] K=[K1,K2,K3,K4,K5,K6],通过改变系数K即可改变关节运动轨迹。六次多项式依然能保证各关节角度、角速度、角加速度的连续平稳运动。

4. 遗传优化

  现在的问题在于,如何能找到比较合适的K值,使得正运动学后的机器人末端执行器和连杆运动能够绕过障碍物,比较不错的方法是采用遗传算法,通过迭代找到最优值。为了方便,这里就采用我之前用过的JADE差分算法来进行寻优。
  适应度函数的确定:遗传优化的目的是在机械臂全局避障的同时,减少不必要的运动,所以适应度函数分为三部分:碰撞检测结果 f c o f_{co} fco、六个关节的角度变化总和 f θ f_{\theta} fθ、末端执行器的运动轨迹长度 f L f_L fL。进而则有 f K = − f c o η 1 f θ + η 2 f L f_K=-\frac{f_{co}}{\eta _1f_{\theta}+\eta _2f_L} fK=η1fθ+η2fLfco  基于此,可在关节空间中规划出一条无碰撞,同时运动学、轨迹长度、关节转动角度一起协同优化的理想运动轨迹。

5. 仿真验证

  将多关节机器人初始位置设在零位q=[0,0,0,0,0,0]rad,此时末端执行器初始位置为T=[0.8201, 0.0391, 0.9483]m,将末端执行器终点位置设为X移动-0.1m,Y移动+0.4m,Z移动-0.4m,即[0.7201, 0.4391, 0.5483]m,通过逆解即可求得末端终点位置对应的各关节角度。
  在机械臂的路径中设置球体障碍物,球体中心坐标设为[0.8, 0.2, 0.8]m,半径设为0.1m,六个关节的角速度、角加速度边界均设置为0。此外,设机械臂运行时间为5s,插值点个数为50,即每段插值点间的运行时间为0.1s。

仿真结果

  可以看出,机械臂在运动过程中发生了很明显的避让现象,为了更明显的观察,绘制出末端执行器的三维运动轨迹,红色为实际运动轨迹,虚线为无障碍物时的理想运动轨迹。

  由于各个关节的运动曲线为六次多项式,所以关节角速度、角加速度满足平滑条件,进一步的,绘制出末端执行器在XYZ方向分量上的速度、加速度曲线,可以看出,机械臂末端执行器的速度、加速度曲线均为连续平滑曲线,满足平稳运动的条件。

JADE寻优迭代图,在经过12次迭代后,迭代出了K的较优值和较小的适应度值。

6. 总结

  基于以上结论,成功的实现了多关节机器人避障路径规划,虽然没有找到一条最优路径,但已经找到了一条较优路径,且同时具备安全、稳定、高效的作用,有了以上的各个关节角度曲线,后续设计轨迹跟踪控制器即可完成机械臂高精度的轨迹跟踪。
  本次实验圆满完成 : )

这篇关于【路径规划】基于六次多项式的多关节机器人避障路径规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890676

相关文章

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表