遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类

本文主要是介绍遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

专题一 深度卷积网络知识详解

专题二 PyTorch应用与实践(遥感图像场景分类)

专题三 卷积神经网络实践与目标检测

专题四 卷积神经网络的遥感影像目标检测任务案例【FasterRCNN】

专题五 Transformer与遥感影像目标检测

专题六 Transformer的遥感影像目标检测任务案例 【DETR】

专题七 深度学习与遥感影像分割任务

专题八 深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

专题九 遥感影像问题探讨与深度学习优化技巧

更多应用


深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的模型。虽然以PyTorch为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,PyTorch平台的掌握也并不容易。

使广大学者能理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像和无人机影像的分类,目标检测,以及语义分割等应用。

专题一 深度卷积网络知识详解

1.深度学习在遥感图像识别中的范式和问题
2.深度学习的历史发展历程
3.机器学习,深度学习等任务的基本处理流程
4.卷积神经网络的基本原理
5.卷积运算的原理和理解
6.池化操作,全连接层,以及分类器的作用
7.BP反向传播算法的理解
8.CNN模型代码详解
9.特征图,卷积核可视化分析

专题二 PyTorch应用与实践(遥感图像场景分类)

1.PyTorch简介
2.动态计算图,静态计算图等机制
3.PyTorch的使用教程
4.PyTorch的学习案例
5.PyTorch的基本使用与API
6.PyTorch图像分类任务讲解
7.不同超参数,如初始化,学习率对结果的影响
8.使用PyTorch搭建神经网络并实现手写数字的分类
9.使用PyTorch修改模型并提升分类模型表现

专题三 卷积神经网络实践与目标检测

1.深度学习下的遥感影像目标检测基本知识
2.目标检测数据集的图像和标签表示方式
3.讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等
4.无人机影像的植物识别和统计
5.讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框
6.架的演变和差异
7.讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型
8.现有检测模型「CNN系列」发展小结,包括OHEM、FCN、DCN等模型

专题四 卷积神经网络的遥感影像目标检测任务案例【FasterRCNN】

1.一份完整的Faster-RCNN 模型下实现遥感影像的目标检测
2.讲解数据集的制作过程,包括数据的存储和处理
3.数据集标签的制作
4.模型的搭建,组合和训练
5.检测任数据集在验证过程中的注意事项

专题五 Transformer与遥感影像目标检测

1.从卷积运算到自注意力运算 self-attention
2.pytorch实现的自监督模块
3.从Transformer到Vision Transformer (ViT)
4.ViT模型在遥感影像中的应用

专题六 Transformer的遥感影像目标检测任务案例 【DETR】

1.Transformer下的新目标检测范式,DETR
2.各类模型在遥感影像下的对比和调研
3.一份完整的DETR模型下实现遥感影像的目标检测
4.讲解针对检测任务的优化策略

专题七 深度学习与遥感影像分割任务

1.深度学习下的遥感影像分割任务的基本概念
2.讲解FCN,SegNet,U-net等模型的差异
3.分割模型的发展小结
4.遥感影像分割任务和图像分割的差异
5.在遥感影像分割任务中的注意事项案例 
讲解数据集的准备和处理
遥感影像划分成小图像的策略
模型的构建和训练方法
验证集的使用过程中的注意事项

专题八 深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

1.PointNet与PointNet++等模型的基本讲解
2.点云数据的预处理和划分
3.点云数据的语义分割
4.点云数据的预测结果分析

专题九 遥感影像问题探讨与深度学习优化技巧

1.现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型
2.从模型演变中讲解实际训练模型的技巧
3.讲解针对数据的优化策略
4.讲解针对模型的优化策略
5.讲解针对训练过程的优化策略
6.讲解针对检测任务的优化策略
7.讲解针对分割任务的优化策略
8.提供一些常用的检测,分割数据集的标注工具


注:请提前自备电脑及安装所需软件


更多应用

①基于python深度学习遥感影像地物分类与目标识别、分割实践
②基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践
③遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
④PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化

基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化_基于深度学习的遥感影像目标提取-CSDN博客文章浏览阅读6.5k次,点赞4次,收藏62次。理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。_基于深度学习的遥感影像目标提取https://blog.csdn.net/weixin_46747075/article/details/127731714?spm=1001.2014.3001.5501★点 击 关 注,获取海量教程和资源

这篇关于遥感影像处理利器:PyTorch框架下CNN-Transformer,地物分类、目标检测、语义分割和点云分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884800

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件