计算机视觉——基于傅里叶幅度谱文档倾斜度检测与校正

2024-04-06 14:52

本文主要是介绍计算机视觉——基于傅里叶幅度谱文档倾斜度检测与校正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

在计算机视觉领域,处理文档数据时,OCR算法的性能往往会受到文档的倾斜度影响。如果文档在输入到模型之前没有经过恰当的校正,模型就无法期待模型能够提供准确的预测结果,或者模型预测的精度会降低。例如,在信息提取系统中,如果向OCR模型提供了倾斜的图像,模型可能无法准确地识别出文本内容的同时,文本的对齐方式也可能因此而丢失。特别在一些包含了表格检测文档,如果在进行表格检测之前没有对图像的倾斜度进行校正,那么模型可能无法准确地预测出表格的边界和角落。

文档的倾斜度是指在扫描或数字化捕获过程中,文档图像出现的倾斜或斜度。这种情况通常因为图像获取时的环境或者设备的原因。在文档处理系统中,进行倾斜估计是一项至关重要的工作,尤其对于扫描得到的文档图像而言,因为准确的倾斜估计直接影响到后续处理步骤的效果。
在这里插入图片描述

文档倾斜校正

主要的方法是通过在2D离散傅里叶幅度谱上应用自适应径向投影来提取给定文档图像的主要倾斜角度。这一过程首先通过二维离散傅里叶变换(DFT)将文档图像从空间域转换到频率域,生成一个频谱,其中每个点的强度代表了图像中特定频率的幅度。这一变换揭示了图像倾斜度的关键频率成分。

接着,对傅里叶幅度谱进行分析,因为在幅度谱中,文档的倾斜度表现为主导方向。通过识别这些方向,可以估计出倾斜角度。

自适应径向投影是这个方法的核心创新点,它包括两个独立的步骤:

  1. 初始径向投影:这一步用于估计初步的倾斜角度,通过在傅里叶谱的中心发出的径向线上投影幅度来实现。得到最高投影值的径向线指示了图像中文本的主要方向,从而关联到倾斜角度。
  2. 校正投影:这一步骤对初步估计进行细化,考虑到初步投影可能受到文本对齐或图像中非文本元素等因素的影响。校正投影会适应这些因素,以提供更精确的倾斜角度估计。

在通过径向投影识别出主导方向后,计算出相应的倾斜角度。这个角度指示了需要旋转的角度,以便将图像中的文本与水平或垂直轴对齐,从而有效地校正图像的倾斜。

为了提高方法的准确性,还包括了一些额外的步骤,比如考虑傅里叶谱中的直流分量(DC)和低频成分,这对于处理不同类型文档图像非常重要。

具体实践与算法推导可看论文《Adaptive Radial Projection on Fourier Magnitude Spectrum for Document Image Skew Estimation》。

代码实现

首先,使用_get_fft_magnitude()函数计算快速傅里叶变换的幅度,如下所示:

def _ensure_gray(image):try:image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)except cv2.error:passreturn imagedef _ensure_optimal_square(image):assert image is not None, imagenw = nh = cv2.getOptimalDFTSize(max(image.shape[:2]))output_image = cv2.copyMakeBorder(src=image,top=0,bottom=nh - image.shape[0],left=0,right=nw - image.shape[1],borderType=cv2.BORDER_CONSTANT,value=255,)return output_imagedef _get_fft_magnitude(image):gray = _ensure_gray(image)opt_gray = _ensure_optimal_square(gray)# threshopt_gray = cv2.adaptiveThreshold(~opt_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -10)# perform fftdft = np.fft.fft2(opt_gray)shifted_dft = np.fft.fftshift(dft)# get the magnitude (module)magnitude = np.abs(shifted_dft)return magnitude

然后使用径向投影计算倾斜角度,该投影沿着各种径向线投影傅里叶谱的幅度:

def _get_angle_radial_projection(m, angle_max=None, num=None, W=None):"""Get angle via radial projection.Arguments:------------:param angle_max : :param num: number of angles to generate between 1 degree:param w: :return:"""assert m.shape[0] == m.shape[1]r = c = m.shape[0] // 2if angle_max is None:passif num is None:num = 20tr = np.linspace(-1 * angle_max, angle_max, int(angle_max * num * 2)) / 180 * np.piprofile_arr = tr.copy()def f(t):_f = np.vectorize(lambda x: m[c + int(x * np.cos(t)), c + int(-1 * x * np.sin(t))])_l = _f(range(0, r))val_init = np.sum(_l)return val_initvf = np.vectorize(f)li = vf(profile_arr)a = tr[np.argmax(li)] / np.pi * 180if a == -1 * angle_max:return 0return a

一旦得到倾斜角度,将使用该倾斜角度来校正上述图像的倾斜度。

def correct_text_skewness(image):"""Method to rotate image by n degree:param image::return:"""# cv2_imshow(image)h, w, c = image.shapex_center, y_center = (w // 2, h // 2)# Find angle to rotate imagerotation_angle = get_skewed_angle(image)print(f"[INFO]: Rotation angle is {rotation_angle}")# Rotate the image by given n degree around the center of the imageM = cv2.getRotationMatrix2D((x_center, y_center), rotation_angle, 1.0)borderValue = (255, 255, 255)rotated_image = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderValue=borderValue)return rotated_image...

这篇关于计算机视觉——基于傅里叶幅度谱文档倾斜度检测与校正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880134

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

基于C#实现将图片转换为PDF文档

《基于C#实现将图片转换为PDF文档》将图片(JPG、PNG)转换为PDF文件可以帮助我们更好地保存和分享图片,所以本文将介绍如何使用C#将JPG/PNG图片转换为PDF文档,需要的可以参考下... 目录介绍C# 将单张图片转换为PDF文档C# 将多张图片转换到一个PDF文档介绍将图片(JPG、PNG)转

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.