《数字图像处理》-上机 5 图像阈值化处理、霍夫变换及形态学算法

本文主要是介绍《数字图像处理》-上机 5 图像阈值化处理、霍夫变换及形态学算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、上机目的

学习图像阈值化处理、霍夫变换、形态学算法及编程实现方法

二、相关知识及练习

1、图像阈值化处理

图像阈值化(Binarization)旨在剔除掉图像中一些低于或高于一定值的像素,从而提 取图像中的物体,将图像的背景和噪声区分开来。 灰度化处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度。阈值化处 理可以将图像中的像素划分为两类颜色,常见的阈值化算法如公式所示: 当某个像素点的灰度 Gray(i,j)小于阈值 T 时,其像素设置为 0,表示黑色;当灰度 Gray(i,j)大于或等于阈值 T 时,其像素值为 255,表示白色。 在 Python 的 OpenCV 库中,提供了固定阈值化函数 threshold()和自适应阈值化函数 adaptiveThreshold(),将一幅图像进行阈值化处理。

(1) 固定阈值化处理

OpenCV 中提供了函数 threshold()实现固定阈值化处理,其函数原型如下: dst = cv2.threshold(src, thresh, maxval, type[, dst]) – src 表示输入图像的数组,8 位或 32 位浮点类型的多通道数 – dst 表示输出的阈值化处理后的图像,其类型和通道数与 src 一致 – thresh 表示阈值 – maxval 表示最大值,当参数阈值类型 type 选择 CV_THRESH_BINARY 或 CV_THRESH_BINARY_INV 时,该参数为阈值类型的最大值 – type 表示阈值类型 其中,threshold()函数不同类型的处理算法如表所示。

2、霍夫变换

霍夫变换是一种在图像中寻找直线,圆形以及其他简单形状的方法。霍夫变换采用类似 于投票的方式来获取当前图像内的形状集合,该变换由 Paul Hough(霍夫)于 1962 年首次 提出。 最初的霍夫变换只能用于检测直线,经过发展后,霍夫变换不仅能够识别直线,还能识 别其他简单的图形结构,常见的有圆形,椭圆等。 我们下面来看看如何使用霍夫变换来检测直线。一条直线可以用数学表达式 y = mx + 或者 ρ = xcosθ + y sinθ表示(极坐标)

  • 上机目的

学习图像阈值化处理、霍夫变换、形态学算法及编程实现方法

  • 相关知识
  1. 图像阈值化处理
  1. 固定阈值化处理
  2. 自适应阈值处理
  1. 霍夫变换
  2. 图像形态学算法
  1. 图像腐蚀与图像膨胀
  • 上机练习

按照上面相关知识的介绍,学会利用 opencv 进行灰度图像及彩色图像的读、显示及写 操作,并编写相应的测试程序。

  1. 图像阈值化处理
  1. 练习:运行程序并查看结果,尝试修改阈值查看结果变化

A、二进制阈值化

代码部分:

运行截图:

将阈值修改为原来的一般,即“127”→“64”后的结果为:

    1. 截断阈值化

代码部分:

运行结果为:

可见相比于二进制阈值的处理结果,图像的明暗程度变浅了。

    1. 阈值化为 0

练习:编写图像阈值化为 0 处理的程序,并与上面的两种阈值化处理算法进行比较。

代码部分:

运行结果:

可见:

当图像阈值化为 0 处理时,效果要比上面的两种阈值化处理算法的灰度值是不一样的。

  1. 自适应阈值化处理

运行程序,并对程序中用到的三种阈值化算法进行对比。

代码部分:

运行结果:

可见,当同一幅图像上的不同部分具有不同亮度时,采用自适应阈值化处理方法可以使得同一幅图像上的不同区域采用不同的阈值,在亮度不同的情况下得到了更好的结果。

  1. 霍夫变换:

练习:理解并运行程序,通过调整参数查看检测结果的变化。

代码部分:

运行结果为:

4、图像腐蚀代码实现

练习:运行上述程序,查看运行结果是否完全去除干扰细线,针对运行结果尝试 进一步改善。

代码部分:

运行结果为:

修改参数可得效果更有的结果:

5、图像膨胀代码实现

练习:理解并运行上述程序,查看运行结果,评价运行效果及分析原因。

代码部分:

运行结果:

 

通过结果可见:将图像中的高亮区域 或白色部分进行扩张,其运行结果图比原图的高亮区域更大,线条变粗了。

  • 编程练习作业:尝试利用形态学算法实现下面的指纹图像预处理

首先图像腐蚀:

import cv2
import numpy as np
#读取图片
src = cv2.imread('Fingerprint2.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((9,9), np.uint8)
#图像腐蚀处理
erosion = cv2.erode(src, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow(
"result", erosion)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

接着图像膨胀处理:

import cv2
import numpy as np
#读取图片
src = cv2.imread('Fingerprint2.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((9,9), np.uint8)
#图像腐蚀处理
erosion = cv2.erode(src, kernel)
#显示图像

kernel2 = np.ones((2,2), np.uint8)
erosion2 = cv2.dilate(erosion
, kernel)
cv2.imshow(
"src", erosion)
cv2.imshow(
"result", erosion2)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

最后再腐蚀:

import cv2
import numpy as np
#读取图片
src = cv2.imread('Fingerprint2.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((9,9), np.uint8)
#图像腐蚀处理
erosion = cv2.erode(src, kernel)
#显示图像

kernel2 = np.ones((4,4), np.uint8)
erosion2 = cv2.dilate(erosion
, kernel)

kernel3 = np.ones((
0,0), np.uint8)
erosion3 = cv2.erode(erosion2
, kernel)
cv2.imshow(
"src", erosion2)
cv2.imshow(
"result", erosion3)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

调参数可得最终结果为:

这篇关于《数字图像处理》-上机 5 图像阈值化处理、霍夫变换及形态学算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877140

相关文章

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea