算法设计与分析实验报告python实现(排序算法、三壶谜题、交替放置的碟子、带锁的门)

本文主要是介绍算法设计与分析实验报告python实现(排序算法、三壶谜题、交替放置的碟子、带锁的门),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 实验目的

1.加深学生对算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;
2.提高学生利用课堂所学知识解决实际问题的能力;
3.提高学生综合应用所学知识解决实际问题的能力。

二、实验任务

1、排序算法
目前已知有几十种排序算法,请查找资料,并尽可能多地实现多种排序算法(至少实现8种)并分析算法的时间复杂度。比较各种算法的优劣。
2、三壶谜题:
有一个充满水的8品脱的水壶和两个空水壶(容积分别是5品脱和3品脱)。通过将水壶完全倒满水和将水壶的水完全倒空这两种方式,在其中的一个水壶中得到4品脱的水。
3、交替放置的碟子
我们有数量为2n的一排碟子,n黑n白交替放置:黑,白,黑,白…
现在要把黑碟子都放在右边,白碟子都放在左边,但只允许通过互换相邻碟子的位置来实现。为该谜题写个算法,并确定该算法需要执行的换位次数。
4、带锁的门:
在走廊上有n个带锁的门,从1到n依次编号。最初所有的门都是关着的。我们从门前经过n次,每次都从1号门开始。在第i次经过时(i = 1,2,…, n)我们改变i的整数倍号锁的状态;如果门是关的,就打开它;如果门是打开的,就关上它。在最后一次经过后,哪些门是打开的,哪些门是关上的?有多少打开的门?

三、实验设备及编程开发工具

实验设备:Win10电脑
开发工具:Python 3.7,Pycharm

四、实验过程设计(算法思路及描述,代码设计)

1、排序算法

(1)冒泡排序

1、比较相邻的元素。如果第一个比第二个大,就交换他们两个

2、对第0个到第n-1个数据做同样的工作。这时,最大的数就“浮”到了数组最后的位置上

3、针对所有的元素重复以上的步骤,除了最后一个

4、持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较

代码:

def BubbleSort(sums):n = len(sums)for i in range(n):for j in range(1,n - i):if sums[j - 1] > sums[j]:sums[j - 1],sums[j] = sums[j],sums[j - 1]return sumsimport random
import timeList = [random.randint(0, 100000) for i in range(5000)]
print(List)
a = time.time()BubbleSort(List)b = time.time()
print(List)
print("算法消耗时间为:",(b - a)*100,"毫秒")

冒泡排序

最好时间复杂度为O(n2),最坏时间复杂度为O(n2),平均时间复杂度为O(n^2)

img

(2)选择排序

1、在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

2、再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾

3、以此类推,直到所有元素均排序完毕

代码:

def SelectSort(sums):n = len(sums)for i in range(0,n):min = ifor j in range(i + 1,n):if sums[j] < sums[min]:min = jsums[min],sums[i] = sums[i],sums[min]return sumsimport random
import timeList = [random.randint(0, 100000) for i in range(5000)]
print(List)
a = time.time()SelectSort(List)b = time.time()
print(List)
print("算法消耗时间为:",(b - a)*100,"毫秒")

选择排序

最好时间复杂度为O(n2),最坏时间复杂度为O(n2),平均时间复杂度为O(n^2)

img

(3)插入排序

1、从第一个元素开始,该元素可以认为已经被排序

2、取出下一个元素,在已经排序的元素序列中从后向前扫描

3、如果被扫描的元素(已排序)大于新元素,将该元素后移一位

4、重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

5、将新元素插入到该位置后

6、重复步骤2~5

代码:

def InsertSort(sums):n = len(sums)for i in range(1,n):temp = sums[i]j = i - 1while j >= 0 and sums[j] > temp:sums[j + 1] = sums[j]j -= 1sums[j + 1] = tempreturn sumsimport random
import timeList = [random.randint(0, 100000) for i in range(5000)]
print(List)
a = time.time()InsertSort(List)b = time.time()
print(List)
print("算法消耗时间为:",(b - a)*100,"毫秒")

插入排序

最好时间复杂度为O(n),最坏时间复杂度为O(n2),平均时间复杂度为O(n2)

img

(4)希尔排序

1、比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,算法先将要排序的一组数按某个增量d分成若干组

2、对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序

3、当增量减到1时,整个要排序的数被分成一组,排序完成

4、一般的初次取序列的一半为增量,以后每次减半,直到增量为1

代码:

def ShellSort(sums):n = len(sums)mid = n//2while mid >= 1:for i in range(mid,n):temp = sums[i]j = iwhile j - mid >= 0 and sums[j - mid] > temp:sums[j] = sums[j - mid]j -= midsums[j] = tempmid //= 2return sumsimport random
import timeList = [random.randint(0, 100000) for i in range(5000)]
print(List)
a = time.time()ShellSort(List)b = time.time()
print(List)
print("算法消耗时间为:",(b - a)*100,"毫秒")

希尔排序

最好时间复杂度为O(nlog n),最坏时间复杂度为O(nlogn),平均时间复杂度为O(nlogn)

img

(5)归并排序

1、申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

2、设定两个指针,最初位置分别为两个已经排序序列的起始位置

3、比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

4、重复步骤 3 直到某一指针达到序列尾

5、 将另一序列剩下的所有元素直接复制到合并序列尾

代码:

def MergeSort(sums):if len(sums) <= 1:return sumsn = len(sums)//2left = MergeSort(sums[:n])right = MergeSort(sums[n + 1:])return Merge(left,right)def Merge(left,right):new_sums = []i,j = 0,0while i < len(left) and j < len(right):if left[i] < right[j]:new_sums.append(left[i])i += 1else:new_sums.append(right[j])j += 1new_sums = new_sums + left[i:] + right[j:]return new_sumsimport random
import timeList = [random.randint(0, 100000) for i in range(5000)]
print(List)
a = time.time()MergeSort(List)b = time.time()
print(MergeSort(List))
print("算法消耗时间为:",(b - a)*100,"毫秒")

归并排序

最好时间复杂度为O(nlogn),最坏时间复杂度为O(nlogn),平均时间复杂度为O(nlogn)

img

(6)快速排序

1、从数列中挑出一个元素作为基准数

2、分区过程,将比基准数大的放到右边,小于或等于它的数都放到左边

3、再对左右区间递归执行第二步,直至各区间只有一个数

代码:

def QuickSort(sums,left,right):if left >= right:return Falselow = lefthigh = righttemp = sums[low]while left < right:while left < right and sums[right] > temp:right -= 1sums[left] = sums[right]while left < right and sums[left] <= temp:left += 1sums[right] = sums[left]sums[right] = tempQuickSort(sums,low,left - 1)QuickSort(sums,left + 1,high)return sumsimport random
import timeList = [random.randint(0, 100000) for i in range(5000)]
print(List)
a = time.time()QuickSort(List,0,len(List) - 1)b = time.time()
print(List)
print("算法消耗时间为:",(b - a)*100,"毫秒")

快速排序

最好时间复杂度为O(nlogn),最坏时间复杂度为O(n^2),平均时间复杂度为O(nlogn)

img

(7)堆排序

1、最大堆调整:将堆的末端子节点作调整,使得子节点永远小于父节点

2、创建最大堆:将堆中的所有数据重新排序

3、堆排序:移除位在第一个数据的根节点,并做最大堆调整的递归运算

代码:

def HeapSort(sums):n = len(sums)first = n//2 - 1for start in range(first,-1,-1):HeapSort_Max(sums,start,n - 1)for end in range(n - 1,0,-1):temp = sums[end]sums[end] = sums[0]sums[0] = tempHeapSort_Max(sums,0,end - 1)return sumsdef HeapSort_Max(sums,start,end):root = startwhile True:child = 2 * root + 1if child > end:breakif child + 1 <= end and sums[child] < sums[child + 1]:child = child + 1if sums[root] < sums[child]:temp = sums[root]sums[root] = sums[child]sums[child] = temproot = childelse:breakimport random
import timeList = [random.randint(0, 100000) for i in range(5000)]
print(List)
a = time.time()HeapSort(List)b = time.time()
print(List)
print("算法消耗时间为:",(b - a)*100,"毫秒")

堆排序

最好时间复杂度为O(nlogn),最坏时间复杂度为O(nlogn),平均时间复杂度为O(nlogn)

img

(8)计数排序

1、找出待排序的数组中最大和最小的元素,新开辟一个长度为 最大值-最小值+1 的数组

2、统计原数组中每个元素出现的次数,存入到新开辟的数组中

3、根据每个元素出现的次数,按照新开辟数组中从小到大的秩序,依次填充到原来待排序的数组中,完成排序

代码:

def RadixSort(sums):Min = min(sums)Max = max(sums)List = [0 for i in range(Max - Min + 2)]for i in range(len(sums)):List[sums[i] - Min] += 1j,k = 0,0while j < (len(List)):if List[j] > 0:sums[k] = j + MinList[j] -= 1k += 1else:j += 1return sumsimport random
import timeList = [random.randint(0, 100000) for i in range(5000)]
print(List)
a = time.time()RadixSort(List)b = time.time()
print(List)
print("算法消耗时间为:",(b - a)*100,"毫秒")

计数排序

最好时间复杂度为O(n),最坏时间复杂度为O(n),平均时间复杂度为O(n)

img

2、三壶谜题

将某个时刻水壶中水的数量看作一个状态,用一个长度为3的数组表示,初始状态便为[8,0,0],再拓展他的下一结点的可能结构,若下一结点的结构已经被拓展过了便放弃,若没有拓展过则加入拓展列表中。然后递归上述操作,直到拓展列表为空或者找到目标为止。

代码:

class node: def __init__(self, data):self.data = dataself.per = None def pour(n):r_list = n.data max_list = [8, 5, 3]  for i, j in ((0, 1), (0, 2), (1, 2), (1, 0), (2, 0), (2, 1)):if r_list[i] != 0:n_list = r_list.copy()  if r_list[i] + r_list[j] > max_list[j]:n_list[i] = r_list[i] - (max_list[j] - r_list[j])n_list[j] = max_list[j]else:n_list[j] = r_list[i] + r_list[j]n_list[i] = 0flag = True for one in closed_list:if one.data == n_list:  flag = Falseif flag:print("扩展的新节点是:",n_list)new_node = node(n_list)  new_node.per = nopen_list.append(new_node)def BFS_node(root_1):  n = root_1print("当前节点:",n.data)if open_list is None:return "没有找到4品脱的水"nodelist = n.dataif 4 in nodelist:print("找到了4品脱的水")print_node(n)return "找到了4品脱的水"closed_list.append(open_list.pop(0))pour(n)print("*******")BFS_node(open_list[0])def print_node(n): if n.per == None:return ""print(n.data)print_node(n.per)# 初始化数据
root = node([8, 0, 0])
open_list = [root]  
closed_list = []
BFS_node(open_list[0])

三壶谜题:

时间复杂度为O(n^2)

img

3、交替放置的碟子

输入碟子的总数n,产生一个0,1交错的列表,其中1代表黑碟子,0代表白碟子,通过冒泡排序将碟子分开。
代码:

def Black_White(s):sums = [0 for i in range(s)]i = 0while i * 2 < s:sums[i * 2] = 1i += 1print(sums)k = 0n = len(sums)for i in range(n):for j in range(1, n - i):if sums[j - 1] > sums[j]:sums[j - 1], sums[j] = sums[j], sums[j - 1]k += 1print(sums)print("次数为:", k, "次")# 黑碟子为1,白碟子为0
Black_White(40)

交替放置的碟子:

时间复杂度为O(n^2)

img

4、带锁的门

输入门的总数n,产生两个列表表示开门和关门的状态,同过循环遍历,将各位表示反复重置,最终得到门的状态并输出。其中1表示开门,0表示关门。
代码:

# 1表示开门,0表示关门
def LockDoor(n):List = [0 for i in range(n)]List_open = []List_close = []k,s = 0,0for i in range(1,n + 1):m = n // ifor j in range(1,m + 1):if List[i * j - 1] == 0:List[i * j - 1] = 1else:List[i * j - 1] = 0for i in range(n):if List[i] == 1:List_open.append(i + 1)k += 1else:List_close.append(i + 1)s += 1print('门的状态:',List,List_open,List_close,k,s)print('开门的编号:',List_open)print('开门的数量为:', k)print('关门的编号:',List_close)print('关门的数量为:',s) LockDoor(100)

带锁的门:

时间复杂度为O(n^2)

img

这篇关于算法设计与分析实验报告python实现(排序算法、三壶谜题、交替放置的碟子、带锁的门)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876478

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi