机器学习(深度学习)缓解过拟合的方法——正则化及L1L2范数详解

本文主要是介绍机器学习(深度学习)缓解过拟合的方法——正则化及L1L2范数详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习(深度学习)缓解过拟合的方法——正则化

    • L1范数和L2范数
      • L1范数
      • L2范数

过拟合的本质:模型对于噪声过于敏感,把训练样本里的噪声当做特征进行学习,以至于在测试集的表现不好,加入正则化后,当输入有轻微的改动,结果受到的影响较小。
正则化的方法主要有以下几种:

  1. 参数范数惩罚,比较好理解,将范数加入目标函数(损失函数),常见的有一范数,二范数
  2. 数据集增强
  3. 添加噪声
  4. earlystopping,当验证集的效果下降,而训练集还未收敛,提前终止训练
  5. 模型的融合,bagging方法
  6. Dropout(类似于bagging多个神经网络)
  7. Batch Normalization
  8. 简化网络结构
    本文接下来将详细介绍L1范数和L2范数,其他的正则化方法比较好理解,就不在详述

L1范数和L2范数

有监督的机器学习问题主要有两个任务:最小化误差和规则化参数。最小化误差主要是为了让模型拟合我们的训练数据,规则化参数是防止模型过分拟合训练数据。因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小。但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本。所以,我们需要保证模型“简单”的基础上最小化训练误差,这样得到的参数才具有好的泛化性能(也就是测试误差也小),而模型“简单”就是通过规则函数来实现的。

L1范数

L1范数是指向量中各个元素绝对值之和,并且有使权值稀疏的特点。从数学的角度来讲,任何的规则化算子,如果他在Wi=0的地方不可微,并且可以分解为一个“求和”的形式,那么这个规则化算子就可以实现稀疏。这说是这么说,W的L1范数是绝对值,|w|在w=0处是不可微。
参数稀疏最大的好处在于特征的选择。一般来说,xi的大部分元素(也就是特征)都是和最终的输出yi没有关系或者不提供任何信息的,在最小化目标函数的时候考虑xi这些额外的特征,虽然可以获得更小的训练误差,但在预测新的样本时,这些没用的信息反而会被考虑,从而干扰了对正确yi的预测。稀疏规则化算子的引入就是为了完成特征自动选择,它会学习地去掉这些没有信息的特征,也就是把这些特征对应的权重置为0。

L2范数

L2范数的一个最大的特点是可以解决过拟合的问题。L2范数是指向量各元素的平方和然后求平方根。我们让L2范数的规则项||W||2最小,可以使得W的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0,这里是有很大的区别的哦。而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。为什么越小的参数说明模型越简单?我的理解是:比如模型把噪声考虑进去,会导致过拟合,但是噪声通常都是很小的,为了让噪声在模型的拟合中起作用,需要对噪声项乘以一个很大的系数。而二范数就避免了这种事情的发生。L2正则化之后w更新的时候前面的系数是小于1的,所以是权重衰减,而过拟合的函数变化都比较剧烈,所以局部导数大,即系数大,而L2可以衰减系数,所以有正则化效果
L2范数还要一个好处是可以解决优化过程中矩阵求逆很困难的情况,其实道理也很简单,之前求解矩阵逆的时候,为了追求精度,权值w会无限制的取很大,但是当结果稍微改变一丁点的时候,为了尽可能的拟合,W也会改变很大。加入二范数限制权值的大小,可以很好地缓解这个问题。

我们从几何的概念来考虑一下
在这里插入图片描述
如上图所示,L1范数和每个坐标相交的地方都有“角”出现,注意在角的位置会产生稀疏,而L2范数没有“角”,所以产生稀疏的概率就比较小了。
总结一下:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge是一种规则化。

这篇关于机器学习(深度学习)缓解过拟合的方法——正则化及L1L2范数详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875355

相关文章

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java中ArrayList与顺序表示例详解

《Java中ArrayList与顺序表示例详解》顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构,:本文主要介绍Java中ArrayList与... 目录前言一、Java集合框架核心接口与分类ArrayList二、顺序表数据结构中的顺序表三、常用代码手动

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程