微生物群落关键种识别:一种不依赖于网络的自上而下的方法

本文主要是介绍微生物群落关键种识别:一种不依赖于网络的自上而下的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  微生物群落在促进养分循环、协助植物生长、维持人体健康等方面发挥着重要的作用。群落关键种对维持微生物群落稳定性具有重要影响,识别关键种一直是微生物生态学中的热点话题。识别关键种主要有两种框架:数据驱动的方法(data driven method)去除实验(perturbation experiment)。其中数据驱动的方法主要有三种:

  • 基于共现网络的方法
  • top-down方法
  • 基于深度学习的方法

注意:数据驱动的方法确定的关键种只是可能的关键种,还需要通过去除实验进一步地验证。

  • 基于共现网络的方法主要包括:构建共现网络→划分模块→计算模块间连通度和模块内连通度→确定关键种,该方法已在之前的博客中有所介绍:计算网络节点模块内连通度(within modular degree)和模块间连通度(between modular degree)。
  • 基于深度学习的方法:这里先做个预告,代码和数据都整理好了,预计下周上线,具体可参考论文Identifying keystone species in microbial communities using deep learning
  • 本文主要介绍top-down方法,该方法源于论文:Top-down identification of keystone taxa in the microbiome。该方法通过计算Empirical Presence-abundance Interrelation (EPI)来衡量物种的重要性。

EPI指标计算的流程是:

  1. 根据物种i的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 然后计算组和组的距离,即该物种的重要性,EPI;
  4. 物种EPI高于平均值+两个标准差的物种可以确定为关键种。

这里的某物种 i i i 的EPI有三种衡量方法:
在这里插入图片描述
D 1 i {D}_{1}^{i} D1i 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 计算组和组样品的两两间的Bray-Crutis距离。假设有5个样品A、B、C、D、E,其中组:A、B、C, 组: D、E。组和组样品的两两间的距离矩阵为:
IDABC
Dxxxxxxxxx
Exxxxxxxxx
  1. 然后取该矩阵的平均值,即为 D 1 i {D}_{1}^{i} D1i

计算 D 1 i {D}_{1}^{i} D1i R代码如下:

EPI_D1 <- function(S) {library(vegan)# InitializationN <- nrow(S)M <- ncol(S)S_01 <- ifelse(S>0,1,0)D1 <- rep(NA, N)for (i in 1:N) {# If the species is always present/absent, D1 is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)ind_pres <- S_01[i, ] != 0S2 <- S[-i, , drop = FALSE]S2 <- S2 / colSums(S2)bc <- as.matrix(vegdist(t(S2)))bc2 <- bc[ind_pres,!ind_pres]D1[i] <- sum(bc2) / (sum(ind_pres) * sum(!ind_pres))}}return(D1)
}

D 2 i {D}_{2}^{i} D2i 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 分别计算组和组样品的平均物种组成,获得 P ‾ \overline P P (P: Presence)和 A ‾ \overline A A (A: Absence),然后计算两者的平均值。假设有5个样品A、B、C、D、E,其中组:A、B、C, 组: D、E。组和组样品平均值如下:
IDABC P ‾ \overline P P
taxa1x1x2x3average(x1,x2,x3)
taxa2y1y2y3average(y1,y2,y3)
taxa3z1z2z3average(z1,z2,z3)
IDCD A ‾ \overline A A
taxa1x1x2average(x1,x2)
taxa2y1y2average(y1,y2)
taxa3z1z2average(z1,z2)
  1. 然后计算 P ‾ \overline P P A ‾ \overline A A的Bray-Crutis距离,即为 D 2 i {D}_{2}^{i} D2i

计算 D 2 i {D}_{2}^{i} D2i R代码如下:

EPI_D2 <- function(S) {N <- nrow(S)M <- ncol(S)S_01 <- ifelse(S>0,1,0)D2 <- rep(NA, N)for (i in 1:N) {# If the species is always present/absent, D2 is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)# Dividing into the two groupsind_pres <- S_01[i, ] != 0S_pres <- as.matrix(S[, ind_pres])S_abs <- as.matrix(S[, !ind_pres])# Removing the i speciesS_pres <- S_pres[-i, , drop = FALSE]S_abs <- S_abs[-i, , drop = FALSE]# NormalizingS_pres <- S_pres / colSums(S_pres)S_abs <- S_abs / colSums(S_abs)# Calculating D2D2[i] <- vegdist(rbind(rowMeans(S_pres), rowMeans(S_abs)))[1]}}return(D2)
}

Q i {Q}^{i} Qi 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 计算样品间的Bray-Crutis距离;
  4. 设定一定的阈值,构建样品-样品的网络,这里网络中的节点代表样品;
  5. 对网络中的节点(代表样品)赋予模块,例如:模块1代表模块2代表
  6. 计算该网络的模块度(modularity),即为 Q i {Q}^{i} Qi

计算 Q i {Q}^{i} Qi 的R代码如下:

EPI_Q <- function(S, threshold_net) {N <- nrow(S)M <- ncol(S)S_01 <- ifelse(S > 0,1,0)Q <- rep(NA, N)modularity <- function(B, s) {library(igraph)B_graph <- graph.adjacency(B, mode = "undirected")d <- degree(B_graph) # Degree of each sampleq <- sum(B) / 2Qmod <- (t(s) %*% (B - (d %*% t(d)) / (2 * q)) %*% s) / (4 * q)return(Qmod)}for (i in 1:N) {# If the species is always present/absent, Q is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)# Removing the i speciesS_i <- S[-i,]# NormalizingS_i <- S_i / colSums(S_i)# Building the networkdistances_i <- as.matrix(vegdist(t(S_i)))dist_threshold <- quantile(distances_i, threshold_net)B_i <- as.matrix(distances_i <= dist_threshold)diag(B_i) <- 0s_i <- as.numeric(S_01[i, ])s_i[s_i == 0] <- -1# CalculatingQ[i] <- modularity(B_i, s_i)}}return(Q)
}

更多测试数据及R代码可参考如下连接:https://mbd.pub/o/bread/ZZ2bm5hx

这篇关于微生物群落关键种识别:一种不依赖于网络的自上而下的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874689

相关文章

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j