微生物群落关键种识别:一种不依赖于网络的自上而下的方法

本文主要是介绍微生物群落关键种识别:一种不依赖于网络的自上而下的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  微生物群落在促进养分循环、协助植物生长、维持人体健康等方面发挥着重要的作用。群落关键种对维持微生物群落稳定性具有重要影响,识别关键种一直是微生物生态学中的热点话题。识别关键种主要有两种框架:数据驱动的方法(data driven method)去除实验(perturbation experiment)。其中数据驱动的方法主要有三种:

  • 基于共现网络的方法
  • top-down方法
  • 基于深度学习的方法

注意:数据驱动的方法确定的关键种只是可能的关键种,还需要通过去除实验进一步地验证。

  • 基于共现网络的方法主要包括:构建共现网络→划分模块→计算模块间连通度和模块内连通度→确定关键种,该方法已在之前的博客中有所介绍:计算网络节点模块内连通度(within modular degree)和模块间连通度(between modular degree)。
  • 基于深度学习的方法:这里先做个预告,代码和数据都整理好了,预计下周上线,具体可参考论文Identifying keystone species in microbial communities using deep learning
  • 本文主要介绍top-down方法,该方法源于论文:Top-down identification of keystone taxa in the microbiome。该方法通过计算Empirical Presence-abundance Interrelation (EPI)来衡量物种的重要性。

EPI指标计算的流程是:

  1. 根据物种i的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 然后计算组和组的距离,即该物种的重要性,EPI;
  4. 物种EPI高于平均值+两个标准差的物种可以确定为关键种。

这里的某物种 i i i 的EPI有三种衡量方法:
在这里插入图片描述
D 1 i {D}_{1}^{i} D1i 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 计算组和组样品的两两间的Bray-Crutis距离。假设有5个样品A、B、C、D、E,其中组:A、B、C, 组: D、E。组和组样品的两两间的距离矩阵为:
IDABC
Dxxxxxxxxx
Exxxxxxxxx
  1. 然后取该矩阵的平均值,即为 D 1 i {D}_{1}^{i} D1i

计算 D 1 i {D}_{1}^{i} D1i R代码如下:

EPI_D1 <- function(S) {library(vegan)# InitializationN <- nrow(S)M <- ncol(S)S_01 <- ifelse(S>0,1,0)D1 <- rep(NA, N)for (i in 1:N) {# If the species is always present/absent, D1 is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)ind_pres <- S_01[i, ] != 0S2 <- S[-i, , drop = FALSE]S2 <- S2 / colSums(S2)bc <- as.matrix(vegdist(t(S2)))bc2 <- bc[ind_pres,!ind_pres]D1[i] <- sum(bc2) / (sum(ind_pres) * sum(!ind_pres))}}return(D1)
}

D 2 i {D}_{2}^{i} D2i 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 分别计算组和组样品的平均物种组成,获得 P ‾ \overline P P (P: Presence)和 A ‾ \overline A A (A: Absence),然后计算两者的平均值。假设有5个样品A、B、C、D、E,其中组:A、B、C, 组: D、E。组和组样品平均值如下:
IDABC P ‾ \overline P P
taxa1x1x2x3average(x1,x2,x3)
taxa2y1y2y3average(y1,y2,y3)
taxa3z1z2z3average(z1,z2,z3)
IDCD A ‾ \overline A A
taxa1x1x2average(x1,x2)
taxa2y1y2average(y1,y2)
taxa3z1z2average(z1,z2)
  1. 然后计算 P ‾ \overline P P A ‾ \overline A A的Bray-Crutis距离,即为 D 2 i {D}_{2}^{i} D2i

计算 D 2 i {D}_{2}^{i} D2i R代码如下:

EPI_D2 <- function(S) {N <- nrow(S)M <- ncol(S)S_01 <- ifelse(S>0,1,0)D2 <- rep(NA, N)for (i in 1:N) {# If the species is always present/absent, D2 is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)# Dividing into the two groupsind_pres <- S_01[i, ] != 0S_pres <- as.matrix(S[, ind_pres])S_abs <- as.matrix(S[, !ind_pres])# Removing the i speciesS_pres <- S_pres[-i, , drop = FALSE]S_abs <- S_abs[-i, , drop = FALSE]# NormalizingS_pres <- S_pres / colSums(S_pres)S_abs <- S_abs / colSums(S_abs)# Calculating D2D2[i] <- vegdist(rbind(rowMeans(S_pres), rowMeans(S_abs)))[1]}}return(D2)
}

Q i {Q}^{i} Qi 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 计算样品间的Bray-Crutis距离;
  4. 设定一定的阈值,构建样品-样品的网络,这里网络中的节点代表样品;
  5. 对网络中的节点(代表样品)赋予模块,例如:模块1代表模块2代表
  6. 计算该网络的模块度(modularity),即为 Q i {Q}^{i} Qi

计算 Q i {Q}^{i} Qi 的R代码如下:

EPI_Q <- function(S, threshold_net) {N <- nrow(S)M <- ncol(S)S_01 <- ifelse(S > 0,1,0)Q <- rep(NA, N)modularity <- function(B, s) {library(igraph)B_graph <- graph.adjacency(B, mode = "undirected")d <- degree(B_graph) # Degree of each sampleq <- sum(B) / 2Qmod <- (t(s) %*% (B - (d %*% t(d)) / (2 * q)) %*% s) / (4 * q)return(Qmod)}for (i in 1:N) {# If the species is always present/absent, Q is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)# Removing the i speciesS_i <- S[-i,]# NormalizingS_i <- S_i / colSums(S_i)# Building the networkdistances_i <- as.matrix(vegdist(t(S_i)))dist_threshold <- quantile(distances_i, threshold_net)B_i <- as.matrix(distances_i <= dist_threshold)diag(B_i) <- 0s_i <- as.numeric(S_01[i, ])s_i[s_i == 0] <- -1# CalculatingQ[i] <- modularity(B_i, s_i)}}return(Q)
}

更多测试数据及R代码可参考如下连接:https://mbd.pub/o/bread/ZZ2bm5hx

这篇关于微生物群落关键种识别:一种不依赖于网络的自上而下的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874689

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行