波士顿房价预测案例(python scikit-learn)---多元线性回归(多角度实验分析)

本文主要是介绍波士顿房价预测案例(python scikit-learn)---多元线性回归(多角度实验分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

波士顿房价预测案例(python scikit-learn)—多元线性回归(多角度实验分析)

这次实验,我们主要从以下几个方面介绍:

一、相关框架介绍

二、数据集介绍

三、实验结果-优化算法对比实验,数据标准化对比实验,正则化对比试验,多项式回归degree对比实验,岭回归alpha敏感度实验

一、相关框架介绍

Scikit-learn(全称:Simple and Efficient Tools for Machine Learning,意为“简单高效的机器学习工具”)是一个开源的Python机器学习库,它提供了简单而高效的工具,用于数据挖掘和数据分析。

Scikit-learn主要特点包括:丰富的算法库、易于使用、高效的性能、数据预处理和特征选择、模型评估和选择、可扩展性、社区支持。

二、数据集介绍

2.1数据集来源

波士顿房价数据集是一个著名的数据集,它在机器学习和统计分析领域中被广泛用于回归问题的实践和研究。这个数据集包含了美国马萨诸塞州波士顿郊区的房价信息,这些信息是由美国人口普查局收集的。
在这里插入图片描述
该数据集共包括507行数据,十三列特征,外加一列标签。

2.2数据集特征

数据集的特征:
CRIM: 城镇人均犯罪率 ZN: 占地面积超过25,000平方英尺的住宅用地比例
INDUS: 每个城镇非零售业务的比例 CHAS: 查尔斯河虚拟变量(如果是河道,则为1;否则为0)
NOX: 一氧化氮浓度(每千万份) RM: 每间住宅的平均房间数
AGE: 1940年以前建造的自住单位比例 DIS: 波士顿的五个就业中心加权距离
RAD: 径向高速公路的可达性指数 TAX: 每10,000美元的全额物业税率
PTRATIO: 城镇的学生与教师比例 B: 1000(Bk - 0.63)^ 2,其中Bk是城镇黑人的比例
LSTAT: 人口状况下降% MEDV: 自有住房的中位数报价, 单位1000美元

三、实验结果-优化算法对比实验,数据标准化对比实验,正则化对比试验,多项式回归degree对比实验,岭回归alpha敏感度实验

3.1 优化算法对比实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")#plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")#plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)#plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)#plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor+'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 数据标准化对比实验

# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")#plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")#plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)#plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)#plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor+'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4])

# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge, RidgeCV
X = boston.data
print(X.min(axis=0))
print(X.max(axis=0))y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
# X_train = ss_X.fit_transform(X_train
# X_test = ss_X.transform(X_test)
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)return lr,sgdr,ridge,lr_y_predict,sgdr_y_predict,ridge_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(y_test, lr_y_predict)print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(y_test, lr_y_predict)print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")# plt.bar(nmse_x,nmse,width=width, color="saddlebrown",label="mse")# plt.bar(mae_x,maes,width=width, color="red",label="mae")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)# plt.text(nmse_x[i],nmse[i], nmse[i],va="bottom",ha="center",fontsize=8)# plt.text(mae_x[i],maes[i], maes[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,model.predict(X),c="orange",edgecolors='k')print(model.predict(X))plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()
lr,sgdr,ridge,lr_y_predict,sgdr_y_predict,ridge_y_predict=train_model()models=[lr,sgdr,]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]plot_line(X,y,lr,'LinearRegression')
plot_line(X,y,sgdr,'SGDRegressor')
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)
plot(results[0][1:4],results[1][1:4])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 正则化对比试验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr,lasso,ridge+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor'+ss)
plot_line(X,y,lasso,'lasso'+ss)
plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

在这里插入图片描述

3.4多项式回归degree对比实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置
from sklearn.preprocessing import PolynomialFeatures
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train[0]=y_train[0]+300
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():poly_reg = PolynomialFeatures(degree=1)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)# 建模#lin_reg = LinearRegression().fit(x_poly, y_data)lr = LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。poly_reg = PolynomialFeatures(degree=2)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)sgdr =  LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)poly_reg = PolynomialFeatures(degree=3)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)ridge =  LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassopoly_reg = PolynomialFeatures(degree=4)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)lasso = LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='ploy-degree=1')plt.bar(mess_x,model2,width=width,color="silver",label="ploy-degree=2")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ploy-degree=3")plt.bar(mae_x,model4,width=width, color="red",label="ploy-degree=4")plt.title("不同degree多项式回归+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
#plot_line(X,y,lr,'LinearRegression+'+ss)
#plot_line(X,y,sgdr,'SGDRegressor'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

截图:
在这里插入图片描述

3.5 岭回归alpha敏感度实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train[0]=y_train[0]+300
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = Ridge(alpha=2)# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = Ridge(alpha=5)# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso =Ridge(alpha=15)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='ridge-alpha=2')plt.bar(mess_x,model2,width=width,color="silver",label="ridge-alpha=5")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")plt.bar(mae_x,model4,width=width, color="red",label="ridge-alpha=15")plt.title("不同alpha-ridge+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor'+ss)
plot_line(X,y,lasso,'lasso'+ss)
plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

运行结果:
在这里插入图片描述

这篇关于波士顿房价预测案例(python scikit-learn)---多元线性回归(多角度实验分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874435

相关文章

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解