路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分)

本文主要是介绍路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

历经一个多星期时间,我们在路径规划——搜索算法部分讲解了7种常见的路径搜索算法,每一种算法的链接放在下面了,有需要的朋友点击跳转即可:

路径规划——搜索算法详解(一):Dijkstra算法详解与代码_dijkstrac代码实现-CSDN博客

路径规划——搜索算法详解(二):Floyd算法详解与MATLAB代码-CSDN博客

路径规划——搜索算法详解(三):RRT算法详解与MATLAB代码-CSDN博客

路径规划——搜索算法详解(四):A*算法详解与C++代码-CSDN博客

路径规划——搜索算法详解(五):Dynamic A Star(D*)算法详解与Matlab代码-CSDN博客

路径规划——搜索算法详解(六):LPA*算法详解与Matlab代码-CSDN博客

路径规划——搜索算法详解(七):D*lite算法详解与Matlab代码-CSDN博客

以上所有算法的仿真都在笔者github上了:GitHub - Adamaser/Path-Planning

路径规划问题可以粗糙地划分为两个步骤:路径搜索与轨迹优化, 路径搜索生成可行的折线路径,但是不符合无人机、无人车的动力学,不能够直接输出给无人机、无人车直接执行。所以此时就需要进行轨迹优化,结合机器人的运动学模型,采用合适的曲线进行轨迹优化,生成光滑可行且符合机器人运动学的路径,由于笔者是做无人机方向的,所以在曲线拟合这一章中将以生成符合无人机运动学的轨迹为例讲解轨迹优化的知识。

曲线拟合部分将介绍两种无人机中常用的曲线,即多项式拟合与B样条拟合,由于其极具工程意义,所以曲线篇将会提供C++代码并且在ROS环境下进行仿真,大家可以看作是minimum-snap算法的复现,希望对大家有所帮助!

一、多项式轨迹介绍:

1.无人机的微分平坦特性

无人机12个状态量,分别为x、y、z三个维度上的位置、速度、角度、角速度,其符号表示如下:

微分平坦特性指的是可以通过对输入的高阶导数进行显示表示,以简化轨迹设计与跟踪控制的表达,可以通过选择合理的控制量对系统的控制空间进行有效降维。

简言说之,就是原有的状态空间有12个量,他们并不是相互之间互不关联的,我们从里面得到几个状态量,通过这些状态量及其高阶导数可以直接求出其他状态量,经过证明,无人机具有微分平坦特性,其状态量可以简化为以下四个量表示:

具体的证明过程大家直接搜索就可以看到很多帖子,这里就不多介绍了,所以我们可以直接通过控制x、y、z、yaw角就可以控制无人机的姿态。

2.多项式轨迹表示与约束构建:

多项式轨迹是一种常见的曲线,根据多项式的最高次数可以分为一次、二次、...、N次多项式,我们需要怎么选择次数呢,我们以五次多项式为例:

如上所示,五次多项式一共拥有p0-p5六个求解的自由度,我们可以添加6个约束条件以求得p0-p5,如下所示,我们可以先通过路径搜索算法得到如下的折线(黑色)轨迹:

我们对每段轨迹进行多项式的拟合,然后连接每一段轨迹的头与尾就可以得到一条连续的多项式轨迹,对于每一条折线轨迹,假设曲线表示为x(t),可以根据需要对起点位置x(0)、终点位置x(T)、起点速度x‘(0)、终点速度x’(T)、起点加速度x‘’(0)、终点加速度x‘’(T)进行约束:

假设此时的约束条件如下:

我们将起点t=0、终点t=T带入以下多项式中:

此外x(t)求导一次后再将起点t=0、终点t=T带入可以得到该时刻的速度、再次求导带入可以得到起点t=0、终点t=T处的加速度,此时我们将其写成矩阵形式可以得到以下的矩阵方程:

求解后我们便可得到满足上述约束条件所对应的p0-p5,此时便可以准确地表达出t=0到t=T时刻的多项式曲线,该曲线满足起点与终点的位置、速度、加速度条件。

以上求解x维度上的多项式曲线,同理我们可以求出y、z维度上的曲线,它们轨迹在各个坐标轴上是独立的,因此我们可以对其分别进行轨迹拟合。也就是说我们可以分别对它们在x , y , z进行路径生成,然后直接将三个轴合成就可以得到一个完整的空间轨迹。

3.minimum-snap算法(PPT来自深蓝学院课程笔记):

基于此思想,我们分段表示每一段折线轨迹:

 采用分段的方式表示其轨迹:

f(t)为位置、f'(t)为速度、f''(t)加速度、f'''(t)为加加速度jerk、f''''(t)为加加加速度snap,jerk可以影响无人机在该维度上的角速度,而jerk可以影响该维度上的角加速度,如下图所示:

以minimum-snap为例,由于我们要对其求4次导数,需要保证jerk是连续的(所以我们要对轨每一段轨迹的起点与终点的位置、速度、加速度、加加速度jerk进行约束,后面会说约束要怎么加),对于每一段轨迹累加其snap的最小值:

如上所示,累加每段轨迹的snap可以化为一个二次优化问题QP,通过求解该优化问题得到每一段轨迹的系数矩阵P,但是在求解之间我们需要将每一段轨迹的起点与终点的位置、速度、加速度约束加入到该优化问题中,可以通过以下方式构建约束:

通过上述方式,我们将起点与终点的导数约束统一为AP=D这一约束条件,所以我们需要求解的优化问题如下所示:

通过调用OOQP、Mosek等QP问题求解器即可得到每一段轨迹的多项式系数,即得到了该维度上的光滑曲线。

具体的大家参考该论文:

Mellinger D, Kumar V. Minimum snap trajectory generation and control for quadrotors[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011: 2520-2525.

二、多项式轨迹仿真:

demo大家可以参考下笔者的Github吧(笔者版本为ubuntu18.04),手搓的,代码注释很详细,包括QP矩阵构建与求解都有:

Path-Planning/Astar_/src at main · Adamaser/Path-Planning (github.com)

将src放到工作空间中,直接catkin build编译,编译后运行:

roslaunch grid_path_searcher my_demo.launch 

就可以直接看到效果(绿色折线为A*搜索结果)

这篇关于路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874365

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected