【信号处理】基于变分自编码器(VAE)的图片典型增强方法实现

2024-04-03 21:44

本文主要是介绍【信号处理】基于变分自编码器(VAE)的图片典型增强方法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

深度学习中,经常面临图片数据量较小的问题,此时,对数据进行增强,显得比较重要。传统的图片增强方法包括剪切,增加噪声,改变对比度等等方法,但是,对于后端任务的性能提升有限。所以,变分自编码器被用来实现深度数据增强。

变分自编码器的主要缺点在于生成图像过于平滑和模糊,图像细节重建不足。

常见的图像增强方法:https://www.tensorflow.org/tutorials/images/data_augmentation

工具

数据集下载地址: CIFAR-10 and CIFAR-100 datasets

方法实现

加载数据和必要的库函数
import tensorflow.compat.v1.keras.backend as K
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
import matplotlib.pyplot as plt
import numpy as np
from numpy import random
import tensorflow_datasets as tfds
import keras
from keras.models import Model
from keras.layers import Conv2D, Conv2DTranspose, Input, Flatten, Dense, Lambda, Reshapextrain , ytrain = tfds.as_numpy(tfds.load('cifar10',split='train',batch_size=-1,as_supervised=True,))
xtest , ytest = tfds.as_numpy(tfds.load('cifar10',split='test',batch_size=-1,as_supervised=True,))
xtrain = (xtrain.astype('float32'))/255
xtest = (xtest.astype('float32'))/255height=32
width=32
channels=3
print(f"Train Shape: {xtrain.shape},Test Shape: {xtest.shape}")
plt.imshow(xtrain[0])

编码器模型搭建
input_shape=(height,width,channels)
latent_dims=3072input_img= Input(shape=input_shape, name='encoder_input')
x=Conv2D(128, 4, padding='same', activation='relu',strides=2)(input_img)
x=Conv2D(256, 4, padding='same', activation='relu',strides=2)(x)
x=Conv2D(512, 4, padding='same', activation='relu',strides=2)(x)
x=Conv2D(1024, 4, padding='same', activation='relu',strides=2)(x)
conv_shape = K.int_shape(x)
x=Flatten()(x)
x=Dense(3072, activation='relu')(x)
z_mean=Dense(latent_dims, name='latent_mean')(x)
z_sigma=Dense(latent_dims, name='latent_sigma')(x)def sampler(args):z_mean, z_sigma = argseps = K.random_normal(shape=(K.shape(z_mean)[0], K.int_shape(z_mean)[1]))return z_mean + K.exp(z_sigma / 2) * epsz = Lambda(sampler, output_shape=(latent_dims, ), name='z')([z_mean, z_sigma])encoder = Model(input_img, [z_mean, z_sigma, z], name='encoder')
print(encoder.summary())

 解码器模型构建
decoder_input = Input(shape=(latent_dims, ), name='decoder_input')
x = Dense(conv_shape[1]*conv_shape[2]*conv_shape[3], activation='relu')(decoder_input)
x = Reshape((conv_shape[1], conv_shape[2], conv_shape[3]))(x)
x = Conv2DTranspose(256, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2DTranspose(128, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2DTranspose(64, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2DTranspose(3, 3, padding='same', activation='relu',strides=(2, 2))(x)
x = Conv2DTranspose(channels, 3, padding='same', activation='sigmoid', name='decoder_output')(x)
decoder = Model(decoder_input, x, name='decoder')
decoder.summary()
z_decoded = decoder(z)class CustomLayer(keras.layers.Layer):def vae_loss(self, x, z_decoded):x = K.flatten(x)z_decoded = K.flatten(z_decoded)# Reconstruction loss (as we used sigmoid activation we can use binarycrossentropy)recon_loss = keras.metrics.binary_crossentropy(x, z_decoded)# KL divergencekl_loss = -5e-4 * K.mean(1 + z_sigma - K.square(z_mean) - K.exp(z_sigma), axis=-1)return K.mean(recon_loss + kl_loss)# add custom loss to the classdef call(self, inputs):x = inputs[0]z_decoded = inputs[1]loss = self.vae_loss(x, z_decoded)self.add_loss(loss, inputs=inputs)return x

 

整体模型构建
y = CustomLayer()([input_img, z_decoded])vae = Model(input_img, y, name='vae')
vae.compile(optimizer='adam', loss=None)
vae.summary()

 

模型训练

history=vae.fit(xtrain, verbose=2, epochs = 100, batch_size = 64, validation_split = 0.2)
 训练可视化
f = plt.figure(figsize=(10,7))
f.add_subplot()
#Adding Subplot
plt.plot(history.epoch, history.history['loss'], label = "loss") # Loss curve for training set
plt.plot(history.epoch, history.history['val_loss'], label = "val_loss") # Loss curve for validation setplt.title("Loss Curve",fontsize=18)
plt.xlabel("Epochs",fontsize=15)
plt.ylabel("Loss",fontsize=15)
plt.grid(alpha=0.3)
plt.legend()
plt.savefig("VAE_Loss_Trial5.png")
plt.show()

 中间编码特征可视化
mu, _, _ = encoder.predict(xtest)
#Plot dim1 and dim2 for mu
plt.figure(figsize=(10, 10))
plt.scatter(mu[:, 0], mu[:, 1], c=ytest, cmap='brg')
plt.xlabel('dim 1')
plt.ylabel('dim 2')
plt.colorbar()
plt.show()
plt.savefig("VAE_Colourbar_Trial5.png")

 

数据增强生成
#RANDOM GENERATION
def generate():n=20figure = np.zeros((width *2 , height * 10, channels))#Create a Grid of latent variables, to be provided as inputs to decoder.predict
#Creating vectors within range -5 to 5 as that seems to be the range in latent spacefor k in range(2):for l in range(10):z_sample =random.rand(3072)z_out=np.array([z_sample])x_decoded = decoder.predict(z_out)digit = x_decoded[0].reshape(width, height, channels)figure[k * width: (k + 1) * width,l * height: (l + 1) * height] = digitplt.figure(figsize=(10, 10))
#Reshape for visualizationfig_shape = np.shape(figure)figure = figure.reshape((fig_shape[0], fig_shape[1],3))plt.imshow(figure, cmap='gnuplot2')plt.show()  plt.savefig("VAE_imagesgen_Trial5.png")

解码器图像重建
#IMAGE RECONSTRUCT USING TEST SET IMGS
def reconstruct():num_imgs = 6rand = np.random.randint(1, xtest.shape[0]-6) xtestsample = xtest[rand:rand+num_imgs]x_encoded = np.array(encoder.predict(xtestsample))latent_xtest=x_encoded[2]x_decoded = decoder.predict(latent_xtest)rows = 2 # defining no. of rows in figurecols = 3 # defining no. of colums in figurecell_size = 1.5f = plt.figure(figsize=(cell_size*cols,cell_size*rows*2)) # defining a figure f.tight_layout()for i in range(rows):for j in range(cols): f.add_subplot(rows*2,cols, (2*i*cols)+(j+1)) # adding sub plot to figure on each iterationplt.imshow(xtestsample[i*cols + j]) plt.axis("off")for j in range(cols): f.add_subplot(rows*2,cols,((2*i+1)*cols)+(j+1)) # adding sub plot to figure on each iterationplt.imshow(x_decoded[i*cols + j]) plt.axis("off")f.suptitle("Autoencoder Results - Cifar10",fontsize=18)plt.savefig("VAE_imagesrecons_Trial5.png")plt.show()

 

代码获取

已经附在文章底部,自行拿取。

项目开发,相关问题咨询,欢迎交流沟通。

这篇关于【信号处理】基于变分自编码器(VAE)的图片典型增强方法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874052

相关文章

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi