线性筛法求素数(欧拉筛法)(求质数,O(n)时间复杂度)(外加求每个整数的最小质因子)(python)

本文主要是介绍线性筛法求素数(欧拉筛法)(求质数,O(n)时间复杂度)(外加求每个整数的最小质因子)(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

python 中求质数的方法有好几种,这里就讲解时间复杂度最低的算法欧拉筛法,时间复杂度为O(n),这是数论中也是算法比赛中必须掌握的方法。

本篇博客还会额外讲解求每个整数的最小质因子,什么是质因子?顾名思义,就是是质数的因子,求这个有什么用呢?下篇博客X的因子链(数论,python)(算术基本定理)(欧拉筛法)会给大家讲解一道例题,在例题中讲解它的用法。

思路:

线性筛法的整体思路是(代码里有详细注释):

  1. 初始化一个长度为 n 的数组,再定义一个长度为n的bool类型数组,用来表示每个数是否为素数,为True表示不是素数
  2. 从2遍历到n,判断是否为素数(bool类型是否为False),若是素数,则将它的倍数标记为True

代码如下:

N = 10000
prime = [0] * N  # 存储所有的质数
cnt = 0  # 质数的个数
vis = [False] * N  # 标记数是否被筛过
for i in range(2, N):if not vis[i]:prime[cnt] = i  # 将当前数 i 记录为质数cnt += 1for j in range(cnt):if prime[j] * i >= N:  # 如果超出n 则无需后续操作直接退出循环breakvis[prime[j] * i] = True  # 标记 i*prime[j] 已经被筛过# 如果i是前面某个素数的倍数时, 说明i以后会由某个更大的数乘这个小素数筛去同理,# 之后的筛数也是没有必要的, 因此在这个时候, 就可以跳出循环了if i % prime[j] == 0:break

欧拉算法的特点就是每个数只会被自己的最小质因数筛过一次,所以由此保证了线性的时间复杂度。

求最小质因子只需在求素数的基础上加上两行代码即可

首先分析质数和非质数的最小质因子是什么。

  • 质数的最小质因子是它本身(因为1是因子但不是质数)
  • 非质数的最小质因子是什么呢?按正常思路分析不好得出结论,但在求素数的过程中有一步是对质数的倍数进行标记,通过这一步就可以判断出非质数的最小质因子是什么了。

代码如下:

N = 10000
prime = [0] * N  # 存储所有的质数
cnt = 0  # 质数的个数
vis = [False] * N  # 标记数是否被筛过
st = [0] * N  # 存储数的最小质因数for i in range(2, N):if not vis[i]:prime[cnt] = i  # 将当前数 i 记录为质数st[i] = i  # 当前数 i 的最小质因数为自身cnt += 1for j in range(cnt):if prime[j] * i >= N:  # 如果超出n 则无需后续操作直接退出循环breakst[prime[j] * i] = prime[j]  # 将 i*prime[j] 的最小质因数标记为 prime[j]vis[prime[j] * i] = True  # 标记 i*prime[j] 已经被筛过# 如果i是前面某个素数的倍数时, 说明i以后会由某个更大的数乘这个小素数筛去同理,# 之后的筛数也是没有必要的, 因此在这个时候, 就可以跳出循环了if i % prime[j] == 0:break

总结:

欧拉筛法是很多数论题型解法的“敲门砖”,下篇博客X的因子链(数论,python)(算术基本定理)(欧拉筛法)将讲解一道比较难的数论题,该题用到了本篇博客的欧拉筛法和最小质因子求法。

这篇关于线性筛法求素数(欧拉筛法)(求质数,O(n)时间复杂度)(外加求每个整数的最小质因子)(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872367

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.