算法学习——LeetCode力扣动态规划篇9(1035. 不相交的线、53. 最大子数组和、392. 判断子序列、115. 不同的子序列)

本文主要是介绍算法学习——LeetCode力扣动态规划篇9(1035. 不相交的线、53. 最大子数组和、392. 判断子序列、115. 不同的子序列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法学习——LeetCode力扣动态规划篇9

在这里插入图片描述

1035. 不相交的线

1035. 不相交的线 - 力扣(LeetCode)

描述

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例

示例 1:
在这里插入图片描述

输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

示例 2:

输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]
输出:3

示例 3:

输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]
输出:2

提示

1 <= nums1.length, nums2.length <= 500
1 <= nums1[i], nums2[j] <= 2000

代码解析

动态规划

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列 就是一样一样的了。

class Solution {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size()+1 , vector<int>(nums2.size()+1,0));for(int i=0 ; i<nums1.size();i++){for(int j=0 ; j<nums2.size();j++){if(nums1[i]==nums2[j])dp[i+1][j+1] = dp[i][j]+1;elsedp[i+1][j+1] = max(dp[i+1][j] , dp[i][j+1]);}}// for(int i=0 ; i<nums1.size();i++)// {//     for(int j=0 ; j<nums2.size();j++)//     {//         cout<<dp[i][j]<<' ';//     }//     cout<<endl;// }return dp[nums1.size()][nums2.size()];}
};

53. 最大子数组和

53. 最大子数组和 - 力扣(LeetCode)

描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组
是数组中的一个连续部分。

示例

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示

1 <= nums.length <= 105
-104 <= nums[i] <= 104

代码解析

贪心算法
class Solution {
public:int maxSubArray(vector<int>& nums) {int sum=0 ,result= INT32_MIN;      //sum是当前数组的和,result是sum中最大的时候for(int i=0 ; i<nums.size() ;i++){sum += nums[i];  //记录当前的sumif(sum > result) result= sum;  //如果sum大于当前result,更新resultif(sum < 0) sum = 0;  //某一个时期的sum小于0舍去}return result;}
};
动态规划
class Solution {
public:int maxSubArray(vector<int>& nums) {vector<int>  dp(nums.size() ,0);int result = INT_MIN;dp[0]= nums[0];for(int i=1 ; i<nums.size() ;i++){dp[i] = max(nums[i],dp[i-1]+nums[i]);}for(int i=0 ; i<nums.size() ;i++) {// cout<<dp[i]<<' ';if(dp[i] > result) result = dp[i];}return result;}
};

392. 判断子序列

392. 判断子序列 - 力扣(LeetCode)

描述

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

进阶

如果有大量输入的 S,称作 S1, S2, … , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

示例

示例 1:

输入:s = “abc”, t = “ahbgdc”
输出:true

示例 2:

输入:s = “axc”, t = “ahbgdc”
输出:false

提示

0 <= s.length <= 100
0 <= t.length <= 10^4
两个字符串都只由小写字符组成。

代码解析

动态规划
class Solution {
public:bool isSubsequence(string s, string t) {if(s.size()==0&&t.size()!=0) return true;if(s.size()==0&&t.size()==0) return true;if(s.size()!=0&&t.size()==0) return false;vector<bool> dp(s.size() , false);int prt = 0;//匹配指针for(int i=0 ; i<t.size() ;i++){if(s[prt] == t[i])//匹配成功标记,匹配下一个{dp[prt] = true;prt++;}}return dp[s.size()-1];}
};

115. 不同的子序列

115. 不同的子序列 - 力扣(LeetCode)

代码描述

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

示例

示例 1:

输入:s = “rabbbit”, t = “rabbit”
输出:3
解释:
如下所示, 有 3 种可以从 s 中得到 “rabbit” 的方案。
rabbbit
rabbbit
rabbbit

示例 2:

输入:s = “babgbag”, t = “bag”
输出:5
解释:
如下所示, 有 5 种可以从 s 中得到 “bag” 的方案。
babgbag
babgbag
babgbag
babgbag
babgbag

提示

1 <= s.length, t.length <= 1000
s 和 t 由英文字母组成

代码解析

动态规划
  • 确定dp数组(dp table)以及下标的含义
    dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

  • 确定递推公式
    这一类问题,基本是要分析两种情况

    • s[i - 1] 与 t[j - 1]相等
      dp[i][j]可以有两部分组成。
      一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。
      一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
      dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
    • s[i - 1] 与 t[j - 1] 不相等
      dp[i][j] = dp[i - 1][j];
  • dp数组如何初始化

    • dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
      那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

    • 再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
      那么dp[0][j]一定都是0,s如论如何也变成不了t。

    • 最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。
      dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。
      在这里插入图片描述

class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size()+1 , vector<uint64_t>(t.size()+1,0) );for(int i=1 ; i<s.size()+1 ;i++)dp[i][0] = 1;for(int j=1 ;j<t.size()+1 ;j++)dp[0][j] = 0;dp[0][0] = 1;for(int i=0 ; i<s.size() ;i++){for(int j=0 ;j<t.size();j++){if(s[i]==t[j]) dp[i+1][j+1] = dp[i][j] + dp[i][j+1];else dp[i+1][j+1] = dp[i][j+1];}}return dp[s.size()][t.size()];}
};

这篇关于算法学习——LeetCode力扣动态规划篇9(1035. 不相交的线、53. 最大子数组和、392. 判断子序列、115. 不同的子序列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/867522

相关文章

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

java中不同版本JSONObject区别小结

《java中不同版本JSONObject区别小结》本文主要介绍了java中不同版本JSONObject区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1. FastjsON2. Jackson3. Gson4. org.json6. 总结在Jav

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进