算法沉淀 —— 动态规划篇(简单多状态dp问题下)

2024-03-31 19:44

本文主要是介绍算法沉淀 —— 动态规划篇(简单多状态dp问题下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法沉淀 —— 动态规划篇(简单多状态dp问题下)

  • 前言
  • 一、买卖股票的最佳时机含冷冻期
  • 二、买卖股票的最佳时机含手续费
  • 三、买卖股票的最佳时机 IV

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程
    *以上述的dp[i]意义为更具, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。

  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、买卖股票的最佳时机含冷冻期

【题目链接】:309. 买卖股票的最佳时机含冷冻期
【题目】:

 给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。​
 设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

【示例】:

输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

【分析】:
 我们可以定义dp[i]表示第i天结束后,买卖股票的最大利润。但我们发现第i天股票分为3种状态:手中有股票、无股票、处于冷冻区。所以我们可以定义一个(n x 3)的二维数组,其中dp[i][0]表示第i天结束后,手中有股票的最大利润;dp[i][1]表示第i天结束后,手中无股票的最大利润;dp[i][2]表示第i天结束后,股票处于冷冻区的最大利润。

状态转移方程推导:
 第i天结束后,手中有股票的情况可由:i-1天结束手中有股票第i天什么都不做、i-1天无股票在第i天买入股票两种情况得到。所以可得状态状态转移方程为 dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
 第i天结束后,手中无股票的情况可由::第i-1天结束手中有股票在第i天卖掉股票、第i-1天股票处于冷冻区在第i天什么都不做两种情况得到。所以可得状态状态转移方程:dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);
 第i天结束后,股票处于冷冻区只能由第i-1天手中有股票第i天将股票卖出所得。所以可得状态状态转移方程:dp[i][2] = dp[i - 1][0] + prices[i];
在这里插入图片描述
 初始化:显然当i为0时,状态转移方程不适应,需要特殊处理。这里我们可以将第0天的买卖股票状态直接初始化好(具体参考代码)。然后从第2天开始,填dp表!!
 最后返回第n天结束后,返回手中无股票和股票处于冷冻区的最大值即可!!
【代码编写】:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(3));//初始化dp[0][0] = -prices[0];//第1天买人股票//填表for(int i = 1; i < n; i++){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);dp[i][2] = dp[i - 1][0] + prices[i];}return max(dp[n - 1][1], dp[n - 1][2]);}
};

二、买卖股票的最佳时机含手续费

【题目链接】:714. 买卖股票的最佳时机含手续费
【题目】:

 给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
 你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
 返回获得利润的最大值。
 注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

【示例】:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

【分析】:
 我们可以定义dp[i]表示第i天结束后,所得最大利润。但第i天可以细分为手中有无股票。所以我们可以创建一个(n x 2)的数组,其中dp[i][0]表示第i天结束后,手中还有股票,此时所得的最大利润;dp[i][1]表示第i天结束后,手中无股票,此时所得的最大利润。

状态转移方程推导:
 dp[i][0]可以由:第i-1天后手中有股票并且第i天啥都不干、第i-1天后手中无股票并且第i天买入股票,所以状态转移方程为:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
 ;dp[i][1]可以由:第i-1天后手中无股票并且第i天啥都不干、第i-1天后手中有股票并且第i天卖出股票(此时一次交易完成,需要将费用fee减掉),所以状态转移方程为:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
在这里插入图片描述

 初始化:显然当i为0时,状态转移方程错误。所以我们可以先初始化dp[0][0]、dp[0][1](即第1天结束后,股票和利润的情况,具体参考代码)。
 然后从左往右填dp表,最后返回第n天结束后手中无股票的最大值即可!!

【代码编写】:

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(2));//初始化dp[0][0] = -prices[0];for(int i = 1; i < n; i++){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);}return dp[n - 1][1];}
};

三、买卖股票的最佳时机 IV

【题目链接】:买卖股票的最佳时机 IV
【题目】:

 给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。
&emsp设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。
&emsp注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

【示例】:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

【分析】:
 我们可以定义dp[i[表示第i天结束后,在最多可以完成 k 笔交易的情况下,买卖股票的获得的最大利润。但我们发现第i天的股票状态还可以细分:手中有无股票,已经交易几次(从0~k次)。所以我们可以创建两个(n x (k + 1))的二维数组f和g:其中f[i][j]表示第i天结束后,完成j次交易,并且手中有股票时所得利润最大值;g[i][j]表示第i天结束后,完成j次交易,并且手中无股票时所得利润最大值。

状态转移方程推导:(我们定义只有当股票卖出时,交易才算完成,次数+1)
 f[i][j]可由:(第i-1天结束后,完成j次交易,并且手中有股票(即f[i-1][j]),在第i天不交易)、(第i-1天结束后,完成j次交易,并且手中无股票(即g[i-1][j]),在第i天买入股票)两种方式得到。所以状态转移方程:f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);

 g[i][j]可由:(第i-1天结束后,完成j次交易,并且手中无股票(即g[i-1][j]),在第i天不交易)、(第i-1天结束后,完成j-1次交易(第i-1天完成交易,此时交易次数加1得到j次),并且手中有股票(即g[i-1][j]),在第i天卖出股票)两种方式得到。所以状态转移方程:g[i][j] = max(g[i-1][j], f[i-1][j-1] + price[i]);
细节处理:

 显然当i为0时,f的状态转移方程不适用,需初始化第1行;但对于g来说,i=0和j=0时,状态转移方程都不适用,需要初始化第一行和第一列。又因为当j=0时,对于g来说此时手中无股票且完成0次交易,没有意义。所以我们对g的状态转移方程仅需转换:

if(j >= 1)g[i][j] = max(g[i-1][j], f[i-1][j-1] + price[i]);

 此时,我们只需要初始化f和g的第一行即可。由于本体种交易次数有限制,我们应当珍惜交易此时。所以我们在第一次时,不仅需交易。此时我们仅需初始化f[0][0]、g[0][0]即可。同时为了防止第一行,d[0][0]和f[0][0]后的数据对后续填表造成影响,我们需将d表和f表中相应的值初始化INT_MIN。
但此时使用状态转移方程可能发生越界,所以我们将INTMIN改为其一半0x3f3f3f3f。
【代码编写】:

class Solution {
public:const int KNF = 0x3f3f3f3f;//INT_MAX一半int maxProfit(int k, vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(k + 1, -KNF));auto g = f;//初始化f[0][0] = -prices[0], g[0][0] = 0;for(int i = 1; i < n; i++)for(int j = 0; j <= k; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if(j >= 1)g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}int ret = -KNF;for(int j = 0; j <= k; j++)ret = max(ret, g[n - 1][j]);return ret;}
};

这篇关于算法沉淀 —— 动态规划篇(简单多状态dp问题下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865174

相关文章

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

MAVEN3.9.x中301问题及解决方法

《MAVEN3.9.x中301问题及解决方法》本文主要介绍了使用MAVEN3.9.x中301问题及解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录01、背景02、现象03、分析原因04、解决方案及验证05、结语本文主要是针对“构建加速”需求交