逻辑斯蒂回归中损失函数和代价函数的推导

2024-03-31 19:38

本文主要是介绍逻辑斯蒂回归中损失函数和代价函数的推导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参见 Stanford CS230学习笔记(二):Lecture 2 Basics, Logistic Regression and Vectorizing

逻辑斯蒂回归

公式

Y ^ = σ ( w T X + b ) \hat{Y}=\sigma (w^TX+b) Y^=σ(wTX+b)

其公式中的各项数据含义如下:

  • 输入X:假设输入为一张64*64的图片,那么依次取出R、G、B矩阵中的所有像素值,我们可以得到一个64*64*3的向量,将其记作x,即为一个输入;将样本集中每个样本的x(i)按列排成(64*64*3)*m的矩阵,记作X
  • 输出YhatYhat是一个1*m的矩阵,每个值代表相应的x的输出,其中的hat代表预测值
  • 参数w b:需要利用梯度下降等方法寻找的参数,以使后续的代价函数最小化
  • σsigmoid函数,用以归一化,将括号中的值限定在(0,1)范围内, σ ( z ) = 1 1 + e − z \sigma(z)=\frac{1}{1+e^{-z}} σ(z)=1+ez1

损失函数与代价函数

在逻辑斯蒂回归中,损失函数(Lost function)为
L ( y ^ , y ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) L(\hat{y},y)=-(y\log{(\hat{y})+(1-y)\log(1-\hat y)}) L(y^,y)=(ylog(y^)+(1y)log(1y^))

代价函数(Cost function)为
J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m}\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

推导

损失函数

逻辑斯蒂回归概率的基本公式为(csdn的latex不支持align…)

合并起来

p ( y ∣ x ) = y ^ y ⋅ ( 1 − y ^ ) ( 1 − y ^ ) p(y|x)=\hat{y}^y\cdot (1-\hat y)^{(1-\hat y)} p(yx)=y^y(1y^)(1y^)

取对数,以保证函数单增

log ⁡ p ( y ∣ x ) = y log ⁡ y ^ + ( 1 − y ^ ) log ⁡ ( 1 − y ^ ) \log p(y|x)=y\log \hat{y} + {(1-\hat y)} \log (1-\hat y) logp(yx)=ylogy^+(1y^)log(1y^)
为了最大化概率(的对数),我们需要最小化损失函数,因此两者增减性相反,添加负号即可
L ( y ^ , y ) = − ( y log ⁡ ( y ^ ) + ( 1 − y ) log ⁡ ( 1 − y ^ ) ) L(\hat{y},y)=-(y\log{(\hat{y})+(1-y)\log(1-\hat y)}) L(y^,y)=(ylog(y^)+(1y)log(1y^))

代价函数

代价函数的公式是根据极大似然估计来的,就是数理统计里面那一套,样本先相乘再求对数,对数求导使导数等于0,得到极大似然估计值

至于为什么最后相乘变成了相加,是因为对数的存在,将连乘的对数变成了各项对数的连加

对于m个样本的整个训练集,服从独立同分布的样本的联合概率就是每个样本的概率的乘积

log ⁡ ∏ i = 1 m p ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 m log ⁡ p ( y ( i ) ∣ x ( i ) ) = − ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) \log \prod_{i=1}^{m}{p(y^{(i)}|x^{(i)})}=\sum_{i=1}^m \log {p(y^{(i)}|x^{(i)})}=-\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) logi=1mp(y(i)x(i))=i=1mlogp(y(i)x(i))=i=1mL(y^(i),y(i))

极大化似然概率就是极小化代价函数,因此增减性相反加负号,此处还要除上m

J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ ( i ) , y ( i ) ) J(w,b)=\frac{1}{m}\sum_{i=1}^m L(\hat y^{(i)},y^{(i)}) J(w,b)=m1i=1mL(y^(i),y(i))

这篇关于逻辑斯蒂回归中损失函数和代价函数的推导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865161

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda