【YOLOv5改进系列(9)】高效涨点----使用CAM(上下文增强模块)替换掉yolov5中的SPPF模块

本文主要是介绍【YOLOv5改进系列(9)】高效涨点----使用CAM(上下文增强模块)替换掉yolov5中的SPPF模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


文章目录

  • 🚀🚀🚀前言
  • 一、1️⃣ CAM模块详细介绍
  • 二、2️⃣CAM模块的三种融合模式
  • 三、3️⃣如何添加CAM模块
    • 3.1 🎓 添加CAM模块代码
    • 3.2 ✨添加yolov5s_CAM.yaml文件
    • 3.3 ⭐️修改yolo.py文相关文件
  • 四、4️⃣实验结果
    • 4.1 🎓 yolov5基准模型
    • 4.2 ✨使用CAM的weight连接方式
    • 4.3 ⭐️用CAM的adaptive连接方式
    • 4.4 🎯用CAM的concat连接方式
    • 4.5 🚀实验总结


在这里插入图片描述

👀🎉📜系列文章目录

【YOLOv5改进系列(1)】高效涨点----使用EIoU、Alpha-IoU、SIoU、Focal-EIOU替换CIou
【YOLOv5改进系列(2)】高效涨点----Wise-IoU详细解读及使用Wise-IoU(WIOU)替换CIOU
【YOLOv5改进系列(3)】高效涨点----Optimal Transport Assignment:OTA最优传输方法
【YOLOv5改进系列(4)】高效涨点----添加可变形卷积DCNv2
【YOLOv5改进系列(5)】高效涨点----添加密集小目标检测NWD方法
【YOLOv5改进系列(6)】高效涨点----使用DAMO-YOLO中的Efficient RepGFPN模块替换yolov5中的Neck部分
【YOLOv5改进系列(7)】高效涨点----使用yolov8中的C2F模块替换yolov5中的C3模块
【YOLOv5改进系列(8)】高效涨点----添加yolov7中Aux head 辅助训练头

🚀🚀🚀前言

CAM(上下文增强模块) 这个模块是出至于CONTEXT AUGMENTATION AND FEATURE REFINE- MENT NETWORK FOR TINY OBJECT DETECTION这篇论文,这是一个针对小目标检测的文本,提出了一种名为“上下文增强和特征细化网络”的方法。将多尺度展开卷积的特征从上到下融合注入到特征金字塔网络中,补充上下文信息。引入通道和空间特征细化机制,抑制多尺度特征融合中的冲突形成,防止微小目标淹没在冲突信息中。此外,提出了一种数据增强方法copy-reduce-paste,该方法可以增加训练过程中微小对象对损失的贡献,保证训练更加均衡。

博主也是使用该论文中的CAM模块去替换掉yolov5中的SPPF模块,在经过CAM三个不同的特征融合连接实验之后(分别是:weight, adaptive,concat),在我自己的疵点数据集上面效果非常好,尤其是使用adaptive连接方法,模型涨点非常高,提升了10个百分点。

📜论文地址:基于上下文增强和特征细化网络的微小目标检测

由于该论文没有提供代码,没有办法像之前的改进一样,直接使用别人的代码修改参数,所以这边也是观看了很多博主的代码之后,自己总结复现了一下。


一、1️⃣ CAM模块详细介绍

微小目标检测需要上下文信息。所以提出使用不同空洞卷积速率的空洞卷积来获取不同感受野的上下文信息,以丰富FPN的上下文信息;下图就是CAM的结构图,在C5上以不同的空洞卷积速率进行空洞卷积,得到不同感受野的上下文信息,卷积核大小为3×3,空洞卷积速率为1、3和5。在这里插入图片描述
SPP模块:我第一次从论文中看到这个结构首先想到的就是和SPP模块比较类似,SPP的特征融合方式是:feature map首先经过一个卷积降维,然后分别进行kernel size为5, 9, 13的max polling层,最后将它们与降维之后的特征concat起来,然后再经过一个卷积将channel恢复成原来大小。
在这里插入图片描述

二、2️⃣CAM模块的三种融合模式

关于C5上面的三个特征融合方式有三种,(a)、(b)和(c)所示,
在这里插入图片描述
方法(a)和(c)分别为加权融合和拼接操作。即直接在空间维度和通道维度上添加特征映射。方法(b)是一种自适应融合方法。具体来说,假设输入的大小可以表示为(bs, C, H, W),我们可以通过卷积、拼接和Softmax操作获得(bs, 3, H, W)的空间自适应权值。三个通道一对一地对应三个输入,通过计算加权和可以将上下文信息聚合到输出。(b)的方法需要进行更多的特征处理,通过实验发现,在我自己的中小型目标疵点数据集上该方法是优于另外两种方法。

在该论文中通过消融实验验证了每种融合方法的有效性,结果如下表所示。 AP ⁡ s \operatorname{AP}_{\mathrm{s}} APs AP ⁡ m \operatorname{AP}_{\mathrm{m}} APm AP ⁡ l \operatorname{AP}_{\mathrm{l}} APl分别定义为微小、中等和大型目标的精度。 AR ⁡ s \operatorname{AR}_{\mathrm{s}} ARs AR ⁡ m \operatorname{AR}_{\mathrm{m}} ARm AR ⁡ l \operatorname{AR}_{\mathrm{l}} ARl分别表示小、中、大目标的召回率。由表1可以看出,(c)对微小物体的优势最大。 AP ⁡ s \operatorname{AP}_{\mathrm{s}} APs AR ⁡ s \operatorname{AR}_{\mathrm{s}} ARs均增长1.8%。方法(b)对于大中型目标改善最大。方法(a)带来的改进基本上介于两者之间。

在这里插入图片描述

三、3️⃣如何添加CAM模块

3.1 🎓 添加CAM模块代码

首先找到models文件夹下面找到common.py文件,在该文件中的最后一行添加CAM模块代码,添加内容如下:

class CAM(nn.Module):def __init__(self, inc, fusion='weight'):super().__init__()assert fusion in ['weight', 'adaptive', 'concat'] #三种融合方式self.fusion = fusionself.conv1 = Conv(inc, inc, 3, 1, None, 1, 1)self.conv2 = Conv(inc, inc, 3, 1, None, 1, 3)self.conv3 = Conv(inc, inc, 3, 1, None, 1, 5)self.fusion_1 = Conv(inc, inc, 1)self.fusion_2 = Conv(inc, inc, 1)self.fusion_3 = Conv(inc, inc, 1)if self.fusion == 'adaptive':self.fusion_4 = Conv(inc * 3, 3, 1)def forward(self, x):x1 = self.conv1(x)x2 = self.conv2(x)x3 = self.conv3(x)if self.fusion == 'weight':return self.fusion_1(x1) + self.fusion_2(x2) + self.fusion_3(x3)elif self.fusion == 'adaptive':fusion = torch.softmax(self.fusion_4(torch.cat([self.fusion_1(x1), self.fusion_2(x2), self.fusion_3(x3)], dim=1)), dim=1)x1_weight, x2_weight, x3_weight = torch.split(fusion, [1, 1, 1], dim=1)return x1 * x1_weight + x2 * x2_weight + x3 * x3_weightelse:return torch.cat([self.fusion_1(x1), self.fusion_2(x2), self.fusion_3(x3)], dim=1)

3.2 ✨添加yolov5s_CAM.yaml文件

这个文件你可以直接复制yolov5s.yaml文件,然后重命名为yolov5s_CAM.yaml,这里只需要修改一处地方,就是将backbone特征提取部分的最后一层SPPF模块替换成CAM模块,并且指定特征的连接方式(weight、adaptive、concat),修改内容如下:

在这里插入图片描述

3.3 ⭐️修改yolo.py文相关文件

📌在models文件夹下面找到yolo.py文件,在342行添加一个CAM模块判断代码,添加如下:

elif m is CAM:c1, c2 = ch[f], (ch[f] * 3 if args[0] == 'concat' else ch[f])args = [c1, args[0]]

在这里插入图片描述

四、4️⃣实验结果

4.1 🎓 yolov5基准模型

训练结果:F1置信度分数为0.71、map@0.5=0.779;
在这里插入图片描述

4.2 ✨使用CAM的weight连接方式

训练结果:F1置信度分数为0.73、map@0.5=0.796;
在这里插入图片描述

4.3 ⭐️用CAM的adaptive连接方式

训练结果F1置信度分数为0.73、map@0.5=0.851
在这里插入图片描述

4.4 🎯用CAM的concat连接方式

训练结果:F1置信度分数为0.73、map@0.5=0.821;
在这里插入图片描述

4.5 🚀实验总结

我的疵点数据集是有大目标和小目标的,使用自适应的连接方式训练效果最好,map@0.5提升了将近6个百分点,其次就是concat连接方式提升效果排第二,因为我的疵点数据集小目标其实是多余大目标的,所以效果是要优于weight连接方式。


在这里插入图片描述

这篇关于【YOLOv5改进系列(9)】高效涨点----使用CAM(上下文增强模块)替换掉yolov5中的SPPF模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/863715

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设