算法系列--动态规划--特殊的状态表示--分析重复子问题

本文主要是介绍算法系列--动态规划--特殊的状态表示--分析重复子问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💕"轻舟已过万重山!"💕
作者:Lvzi
文章主要内容:算法系列–算法系列–动态规划–特殊的状态表示–分析重复子问题
在这里插入图片描述

大家好,今天为大家带来的是算法系列--动态规划--特殊的状态表示--分析重复子问题

一.组合总数IV

链接:
https://leetcode.cn/problems/combination-sum-iv/
在这里插入图片描述
分析:

本题名字叫做组合问题,但实际上是一个排列问题,需要说明的是背包问题解决的是有限制条件下的"组合"问题,本题是一个排列问题,其实根本就无法使用背包问题的思路解决

那该如何解决呢?而且这道题还不太容易分析状态表示,其实这是动态规划问题中比较难的一种问题,状态表示的确立应该是:在分析问题的时候,发现重复的子问题,并抽象出状态表示

在这里插入图片描述
目的是求出总和等于target的所有排列方式,如果固定第一个数为a,那么就是求出总和等于target-a的所有排列方式,这里的重复子问题就是求出总和等于某个数的所有排列方式

状态表示:

  • dp[i]:总和等于i的所有排列方式

状态转移方程:
还是根据最后一个位置的状态划分问题
在这里插入图片描述
nums[j]表示的是数组中任意的一个数,只要符合条件(i >= nums[j]),都可以作为组成总和为i的排列方式的一种,那么只需在前面判断组成和为i-nums[j]的所有排列数即可,即dp[i - nums[j](注意本题是排列,排列!!!是区分顺序的!!!)

初始化:

  • dp[0] = 1:凑出总和为0的所有方式–>什么也不选–>空集也算一种情况

代码:

class Solution {public int combinationSum4(int[] nums, int target) {int[] dp = new int[target + 1];dp[0] = 1;for(int i = 1; i <= target; i++)for(int j = 0; j < nums.length; j++)if(i >= nums[j])dp[i] += dp[i - nums[j]];return dp[target];}
}

根据状态表示可以推导出最后应该返回的结果为总和为target的所有排列方式,但是这些排列方式的组合中必须包含数组中的数字

二.不同的二叉搜索树

链接:
https://leetcode.cn/problems/unique-binary-search-trees/
在这里插入图片描述
分析:

做之前一定要知道什么是二叉搜索树,二叉搜索树是指一课二叉树的所有子树都满足left < root < right

本题同样也可以采用在分析问题的时候,发现重复的子问题,并抽象出状态表示的分析方法
在这里插入图片描述
这里的重复子问题就是选择一个数作为根节点之后,统计其所有的情况,一直统计完所有的数

状态表示:

  • dp[i]:结点的个数为i时,一共有多少种二叉搜索树

状态转移方程:
在这里插入图片描述

初始化:

  • dp[0] = 1:空树也算是二叉搜索树

代码:

class Solution {public int numTrees(int n) {int[] dp = new int[n + 1];dp[0] = 1;// 初始化for(int i = 1; i <= n; i++)// 枚举节点的总数for(int j = 1; j <= i; j++)// 选择每一个根节点dp[i] += dp[j - 1] * dp[i - j];// 填表return dp[n];}
}

动态规划的系列就此完结!

这篇关于算法系列--动态规划--特殊的状态表示--分析重复子问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/862681

相关文章

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringSecurity JWT基于令牌的无状态认证实现

《SpringSecurityJWT基于令牌的无状态认证实现》SpringSecurity中实现基于JWT的无状态认证是一种常见的做法,本文就来介绍一下SpringSecurityJWT基于令牌的无... 目录引言一、JWT基本原理与结构二、Spring Security JWT依赖配置三、JWT令牌生成与

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf