搜索与图论——bellman—ford算法、spfa算法求最短路

2024-03-30 15:44

本文主要是介绍搜索与图论——bellman—ford算法、spfa算法求最短路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

bellman-ford算法 时间复杂度O(nm)

在一般情况下,spfa算法都优于bf算法,但遇到最短路的边数有限制的题时,只能用bf算法

bf算法和dijkstra很像

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>using namespace std;const int N = 510,M = 10010;int n,m,k;
int dist[N],backup[N]; //backup备份数组struct Edge{int a,b,w;
}Edge[M]; //存所有边int bellman_ford(){memset(dist,0x3f,sizeof dist);dist[1] = 0;for(int i = 0;i < k;i ++ ){memcpy(backup,dist,sizeof dist); //备份dist,不会出现串联情况for(int j = 0;j < m;j ++ ){int a = Edge[j].a,b = Edge[j].b,w = Edge[j].w;dist[b] = min(dist[b],backup[a] + w);}}if(dist[n] > 0x3f3f3f3f / 2) return 0;else return dist[n];
}int main(){cin >> n >> m >> k;for(int i = 0;i < m;i ++ ){int a,b,w;cin >> a >> b >> w;Edge[i] = {a,b,w};}int t = bellman_ford();if(!t) cout << "impossible" << endl;else cout << t << endl;return 0;
}

spfa算法 时间复杂度一般O(m), 最坏O(nm)

基本上单源最短路都可以用spfa来解决

spfa的核心优化思路是:拿我更新过的点来更新别人。一个点如果没有被更新过的话,拿它来更新别人一定是没有效果的,只有该点变小了,该点后面的点才会变小

spfa代码和堆优化dijkstra特别像

spfa算法求最短路

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>using namespace std;typedef pair<int,int> PII;const int N = 150010;int n,m;
int h[N],w[N],e[N],ne[N],idx;
int dist[N];
bool vis[N];int add(int a,int b,int c){e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx,idx ++ ;
}int spfa(){memset(dist,0x3f,sizeof dist);dist[1] = 0;queue<int> q; //队列里存的是变小的aq.push(1);vis[1] = true;while(q.size()){int t = q.front();q.pop();vis[t] = false;for(int i = h[t];i != -1;i = ne[i]){int j = e[i];if(dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];if(!vis[j]){q.push(j);vis[j] = true;}}}}if (dist[n] == 0x3f3f3f3f) return 0;return dist[n];
}int main(){cin >> n >> m;memset(h,-1,sizeof h);while(m -- ){int x,y,z;cin >> x >> y >> z;add(x,y,z);}int t = spfa();if(!t) cout << "impossible" << endl;else cout << t << endl;return 0;
}

spfa算法求负环

spfa算法可以求出负环用的是抽屉原理,即把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

代码在spfa求最短路的模板上稍加改动即可

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>using namespace std;typedef pair<int,int> PII;const int N = 150010;int n,m;
int h[N],w[N],e[N],ne[N],idx;
int dist[N],cnt[N];
bool vis[N];int add(int a,int b,int c){e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx,idx ++ ;
}bool spfa(){queue<int> q;for(int i = 1;i <= n;i ++ ){ //由于存在的负环1号点可能走不到,所以要把每一个点都推进队列vis[i] = true;q.push(i);}vis[1] = true;while(q.size()){int t = q.front();q.pop();vis[t] = false;for(int i = h[t];i != -1;i = ne[i]){int j = e[i];if(dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];cnt[j] = cnt[t] + 1; //最重要的一步,如果j被更新了最短路,那么意味着j点的cnt是前一个点t+1条边达到的if(cnt[j] >= n) return true;if(!vis[j]){q.push(j);vis[j] = true;}}}}return false;
}int main(){cin >> n >> m;memset(h,-1,sizeof h);while(m -- ){int x,y,z;cin >> x >> y >> z;add(x,y,z);}if(spfa()) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

这篇关于搜索与图论——bellman—ford算法、spfa算法求最短路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861898

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int