搜索与图论——bellman—ford算法、spfa算法求最短路

2024-03-30 15:44

本文主要是介绍搜索与图论——bellman—ford算法、spfa算法求最短路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

bellman-ford算法 时间复杂度O(nm)

在一般情况下,spfa算法都优于bf算法,但遇到最短路的边数有限制的题时,只能用bf算法

bf算法和dijkstra很像

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>using namespace std;const int N = 510,M = 10010;int n,m,k;
int dist[N],backup[N]; //backup备份数组struct Edge{int a,b,w;
}Edge[M]; //存所有边int bellman_ford(){memset(dist,0x3f,sizeof dist);dist[1] = 0;for(int i = 0;i < k;i ++ ){memcpy(backup,dist,sizeof dist); //备份dist,不会出现串联情况for(int j = 0;j < m;j ++ ){int a = Edge[j].a,b = Edge[j].b,w = Edge[j].w;dist[b] = min(dist[b],backup[a] + w);}}if(dist[n] > 0x3f3f3f3f / 2) return 0;else return dist[n];
}int main(){cin >> n >> m >> k;for(int i = 0;i < m;i ++ ){int a,b,w;cin >> a >> b >> w;Edge[i] = {a,b,w};}int t = bellman_ford();if(!t) cout << "impossible" << endl;else cout << t << endl;return 0;
}

spfa算法 时间复杂度一般O(m), 最坏O(nm)

基本上单源最短路都可以用spfa来解决

spfa的核心优化思路是:拿我更新过的点来更新别人。一个点如果没有被更新过的话,拿它来更新别人一定是没有效果的,只有该点变小了,该点后面的点才会变小

spfa代码和堆优化dijkstra特别像

spfa算法求最短路

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>using namespace std;typedef pair<int,int> PII;const int N = 150010;int n,m;
int h[N],w[N],e[N],ne[N],idx;
int dist[N];
bool vis[N];int add(int a,int b,int c){e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx,idx ++ ;
}int spfa(){memset(dist,0x3f,sizeof dist);dist[1] = 0;queue<int> q; //队列里存的是变小的aq.push(1);vis[1] = true;while(q.size()){int t = q.front();q.pop();vis[t] = false;for(int i = h[t];i != -1;i = ne[i]){int j = e[i];if(dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];if(!vis[j]){q.push(j);vis[j] = true;}}}}if (dist[n] == 0x3f3f3f3f) return 0;return dist[n];
}int main(){cin >> n >> m;memset(h,-1,sizeof h);while(m -- ){int x,y,z;cin >> x >> y >> z;add(x,y,z);}int t = spfa();if(!t) cout << "impossible" << endl;else cout << t << endl;return 0;
}

spfa算法求负环

spfa算法可以求出负环用的是抽屉原理,即把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

代码在spfa求最短路的模板上稍加改动即可

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>using namespace std;typedef pair<int,int> PII;const int N = 150010;int n,m;
int h[N],w[N],e[N],ne[N],idx;
int dist[N],cnt[N];
bool vis[N];int add(int a,int b,int c){e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx,idx ++ ;
}bool spfa(){queue<int> q;for(int i = 1;i <= n;i ++ ){ //由于存在的负环1号点可能走不到,所以要把每一个点都推进队列vis[i] = true;q.push(i);}vis[1] = true;while(q.size()){int t = q.front();q.pop();vis[t] = false;for(int i = h[t];i != -1;i = ne[i]){int j = e[i];if(dist[j] > dist[t] + w[i]){dist[j] = dist[t] + w[i];cnt[j] = cnt[t] + 1; //最重要的一步,如果j被更新了最短路,那么意味着j点的cnt是前一个点t+1条边达到的if(cnt[j] >= n) return true;if(!vis[j]){q.push(j);vis[j] = true;}}}}return false;
}int main(){cin >> n >> m;memset(h,-1,sizeof h);while(m -- ){int x,y,z;cin >> x >> y >> z;add(x,y,z);}if(spfa()) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

这篇关于搜索与图论——bellman—ford算法、spfa算法求最短路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861898

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第